PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A 3D-CNT micro-electrode array for zebrafish ECG study including directionality measurement and drug test

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to demonstrate the applicability of three dimensional-carbon-nanotubes (3D-CNT) micro-electrode array for electrocardiogram (ECG) study on the premier vertebrate model zebrafish. The small-feature size and vectorial array of 3D-CNT micro-electrodes were designed to detect ECG signals with high spatial resolution. With 30 μm–85 μm spacing between electrodes, it enables to detect the directionality of the ECG signals, the change of the characteristic ECG wave-forms at different locations of an adult zebrafish heart. Besides, the preliminary drug response tests using 3D-CNT micro-electrode were also carried out, which validated the capability of real-time observation on drug-induced ECG signal changes. The 3D-CNT micro-electrode array is thus feasible for ECG research and cardiac drug screenings, and holds high potential for studying bioelectric signals of other living organ-isms in the future.
Twórcy
autor
  • Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
  • Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
  • Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
  • Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
autor
  • Institute of Electronics Engineering, National Tsing Hua University, Hsinchu, Taiwan
autor
  • Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
Bibliografia
  • [1] Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007;8(5):353–67.
  • [2] Liu CC, Li L, Lam YW, Siu CW, Cheng SH. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation. Sci Rep 2016;6:25073.
  • [3] Huang W-C, Hsieh Y-S, Chen I-H, Wang C-H, Chang H-W, Yang C-C, et al. Combined use of MS-222 (Tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish 2010;7 (3):297–304.
  • [4] Hassel D, Scholz EP, Trano N, Friedrich O, Just S, Meder B, et al. Deficient zebrafish ether-à-go-go–related gene channel gating causes short-QT syndrome in zebrafish reggae mutants. Circulation 2008;117(7):866–75.
  • [5] Milan DJ, Jones IL, Ellinor PT, MacRae CA. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol 2006;291(1):H269–73.
  • [6] Yu F, Huang J, Adlerz K, Jadvar H, Hamdan MH, Chi N, et al. Evolving cardiac conduction phenotypes in developing zebrafish larvae: implications to drug sensitivity. Zebrafish 2010;7(4):325–31.
  • [7] Dhillon SS, Dóró S, Magyary I, Egginton S, Sík A, Müller F. Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS One 2013;8(4):1–10. Open access.
  • [8] Lin M-H, Chou H-C, Chen Y-F, Liu W, Lee CC, Liu LY-M, et al. Development of a rapid and economic in vivo electrocardiogram platform for cardiovascular drug assay and electrophysiology research in adult sebrafish. Sci Rep 2018;8:15986 (12 pages).
  • [9] Pan AI, Lin M-H, Chung H-W, Chen H, Yeh S-R, Chuang Y-J, et al. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording. Analyst 2015;141(1):279–84.
  • [10] Zhang X, Tai J, Park J, Tai YC. Flexible MEA for adult zebrafish ECG recording covering both ventricle and atrium. In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS) 2014;841–4.
  • [11] Zhang X, Beebe T, Jen N, Lee C-A, Tai Y, Hsiai TK. Flexible and waterproof micro-sensors to uncover zebrafish circadian rhythms: the next generation of cardiac monitoring for drug screening. Biosens Bioelectron 2015;71:150–7.
  • [12] Wang K, Fishman H, Dai Hongjie, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett 2006;6(9):2043–8.
  • [13] Dimaki M, Vazquez P, Olsen MH, Sasso L, Rodriguez-Trujillo R, Vedarethinam I, et al. Fabrication and characterization of 3D Micro- and nanoelectrodes for neuron recordings. Sensors 2010;10(11):10339–55.
  • [14] Hai A, Shappir J, Spira ME. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J Neurophysiol 2010;104(1):559–68.
  • [15] Hai A, Spira ME. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip 2012;12 (16):2865–73.
  • [16] Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 2013;8 (2):83–94.
  • [17] Ryynänen T, Pekkanen-Mattila M, Shah D, Kreutzer J, Kallio P, Lekkala J, et al. Microelectrode array for noninvasive analysis of cardiomyocytes at the single-cell level. Jpn J Appl Phys 2018;57(11):117001. Open access.
  • [18] Tertoolen LGJ, Braam SR, van Meer BJ, Passier R, Mummery CL. Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun 2018;497 (4):11135–41.
  • [19] Wang X, Gkogkidis CA, Iljina O, Fiederer LDJ, Henle C, Mader I, et al. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries. J Neural Eng 2017;14(4):056004 (23 pp) Open access.
  • [20] Lenning M, Fortunato J, Le T, Clark I, Sherpa A, Yi S, et al. Real-time monitoring and analysis of zebrafish electrocardiogram with anomaly detection. Sensors 2018;18:61–76.
  • [21] Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, et al. Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 2003;377:486–95.
  • [22] Lee Y, Kong C, Chang JW, Jun SB. Carbon-fiber based microelectrode array embedded with a biodegradable silk support for in vivo neural recording. J Korean Med Sci 2019;34(4). e:24, 1–15.
  • [23] Ryynänen T, Pelkonen A, Grigoras K, Ylivaara OME, Hyvärinen T, Ahopelto J, et al. Microelectrode array with transparent ALD TiN electrodes. Front Neurosci 2019;13. Article 226, 7 pages, Open access.
  • [24] Ryynänen T, Toivanen M, Salminen T, Ylä-Outinen L, Narkilahti S, Lekkala J. Ion beam assisted E-Beam deposited TiN microelectrodes—applied to neuronal cell culture medium evaluation. Front Neurosci 2018;12. Article 882, 13 pages, Open access.
  • [25] Oehler M, Schilling M, Esperer HD. Capacitive ECG system with direct access to standard leads and body surface potential mapping/Kapazitives EKG-System Zur Messung von Standardableitungen Und Body-Surface-Potential- Maps. Biomed Tech Eng 2009;54(6):329–35.
  • [26] Lee SM, Byeon HJ, Kim BH, Lee J, Jeong JY, Lee JH, et al. Flexible and implantable capacitive microelectrode for bio-potential acquisition. BioChip J 2017;153–63.
  • [27] Kim JM, Im C, Lee WR. Plateau-shaped flexible polymer microelectrode array for neural recording. Polymers 2017;9:690–706.
  • [28] Cao H, Yu F, Zhao Y, Zhang H, Tai J, Lee J, et al. Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integr Biol 2014;6:789–95.
  • [29] Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 2003;3(5):597–602.
  • [30] Musameh M, Lawrence NS, Wanh J. Electrochemical activation of carbon nanotubes. Electrochem Commun 2005;7(1):14–8.
  • [31] Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nano 2008;3(7):434–9.
  • [32] Yeh S-R, Chen Y-C, Su H-C, Yew T-R, Kao H-H, Lee Y-T, et al. Interfacing neurons both extracellularly and intracellularly using carbon nanotube probes with long-term endurance. Langmuir 2009;25(13):7718–24.
  • [33] Gytis B, Baranauskas G, Maggiolini E, Castagnola E, Ansaldo A, Mazzoni A, et al. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-Noise ratio. J Neural Eng 2011;8(6):066013.
  • [34] Fendyur A, Spira ME. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom- shaped microelectrodes. Front Neuroeng 2012;5:21.
  • [35] Baranauskas G, Maggiolini E, Castagnola E, Ansaldo A, Mazzoni A, Angotzi GN, et al. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-Noise ratio. J Neural Eng 2011;8 (6):066013.
  • [36] Lee SM, Byeon HJ, Lee JH, Baek DH, Lee KH, Hong JS, et al. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci Rep 2014;4srep06074.
  • [37] Hsu H-L, Teng I-J, Chen Y-C, Hsu W-L, Lee Y-T, Yen S-J, et al. Flexible UV-ozone-modified carbon nanotube electrodes for neuronal recording. Adv Mater 2010;22(19):2177–81.
  • [38] Mersereau EJ, Poitra SL, Espinoza A, Crossley DA, Darland T. The effects of cocaine on heart rate and electrocardiogram in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2015;172–173:1–6.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fafadd78-ce67-45c7-a581-80d67e5deaae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.