

61

A METHODOLOGICAL PROPOSAL FOR IMPLEMENTING

INTERVAL TYPE-2 FUZZY PROCESSORS OVER DIGITAL

SIGNAL CONTROLLERS

Leonardo Leottau Forero
1
, Miguel Melgarejo

1

1
Laboratory for Automation, Microelectronics and Computational Intelligence

Faculty of Engineering, Universidad Distrital Francisco José de Caldas.

Bogotá D.C., Colombia.

(leottau, mmelgarejo)@ieee.org

Abstract

This article presents a methodological proposal for implementing interval type-

2 fuzzy processors over digital signal controller technology. We describe the

main considerations that a practitioner or an engineer should follow when

implementing an interval type-2 fuzzy system over an embedded processor.

These considerations guide the implementation study of eight interval type-2

fuzzy processors, which are fully characterized and tested. Results show that by

combining fast computing strategies and technologies like digital signal

controllers, the inference time of an embedded type-2 fuzzy processor can be

set to hundreds of microseconds.

Key words: Fuzzy logic, Type-2 fuzzy systems, Fuzzy hardware, embedded

systems.

1 Introduction

Type-2 Fuzzy Logic Systems (T2-FLS) are rule based systems in which

linguistic variables are described by means of Type-2 fuzzy sets (T2-FS) [1,

6]. About a decade of experimental evidence has shown that these systems

outperform their Type-1 counterparts (T1-FLS) in applications where non-

linearity and uncertainty appear at same time [4]. Up to date, there is not a

formal demonstration of that evidence, however more and more works that

support it are being developed. Research on T2-FLS is spreading worldwide

covering from theory to real world applications [1, 3].

A representation of the inference model for T2-FLS is depicted in Fig. 1

[1]. It begins with fuzzification, which maps crisp points into T2-FS. Next,

inference engine computes the rule base by making logical combinations of

antecedent T2-FS, whose results are implicated with consequent T2-FS to

Leottau Forero L., Melgarejo M.

62

form an aggregated output type-2 fuzzy set. Afterwards, Type-Reduction (TR)

computes a type-1 fuzzy set that is finally defuzzified in order to obtain a

crisp output [3, 18]. The computational complexity of this model is reduced if

interval type-2 fuzzy sets are used [6].

Hardware implementation of T1-FLS is a well-known area. Implementa-

tions over technologies like Field Programmable Gate Arrays (FPGAs), Digi-

tal Signal Processors (DSPs) and microcontrollers of this kind of systems

have been reported [2]. Although in recent years, works related to the hard-

ware implementation of T2-FLS have progressively increased, this research

area is barely in its beginnings [5, 10, 12, 13, 15, 16, 19]. Complexity of algo-

rithms involved in T2-FLS has mainly limited the implementation of these

systems to general purpose computing platforms.

Type-2 fuzzy hardware is a topic of special interest, since the application

of T2-FLS to particular fields that demand mobile electronic solutions would

be necessary [5]. Some recent applications of T2-FLS have been developed in

fields like robotics, communication and control systems among others [5, 16,

17, 20]. It is worth to think about the possibility of embedding T2-FLS han-

dling these applications in order to achieve better communication speeds in

smaller areas.

Hardware implementations deal with trade-offs among several variables

like area, power consumption and computing speed [2]. Particularly speaking,

T2-FLS are complex systems because of the inherent parallel nature of their

operations. Besides, these systems pose an additional problem, which is the

computation of type-reduction [6, 11, 8, 9]. Thus, type-2 fuzzy hardware is

focused on developing architectures, methods and techniques for handling the

computational burden of T2-FLS considering the typical restrictions of em-

bedded systems.

Figure. 1 Type-2 fuzzy system

Day by day, new embedded systems are available in the market. These

systems include new capabilities by combining functions found in previous

devices. Digital Signal Controller (DSC) technology is one example of it [7].

A DSC is an embedded processor that includes the computing power of

a typical Digital Signal Processor mixed with the functionality of a microcon-

troller.

A Methodological Proposal for Implementing …

63

Implementations of type-2 fuzzy controllers over embedded processors

have been presented in [10, 12, 13]. These works have focused on describing

particular applications. However, methodological considerations for achieving

those implementations are barely mentioned. Thus, practitioners or engineers

interested in implementing T2-FLS on hardware are not being fully benefici-

ated, since key aspects of hardware developments are not entirely described.

This work presents some methodological considerations and strategies for

implementing each stage of an interval type-2 fuzzy processor (IT2-FP) over

DSC technology. This device combines the parallelism of a DSP with the

functionality a microcontroller, achieving an interesting cost–benefit solution

for this application. In addition, this work compares several implementations

of type-2 fuzzy processors over this technology in order to provide some light

about future developments in this area.

The article is organized as follows: Section 2 presents some methodologi-

cal considerations for implementing interval type-2 fuzzy systems over em-

bedded processors. Section 3 describes an implementation study for eight

interval type-2 fuzzy processors over a DSC family. Section 4 presents and

discusses several implementation results. Finally, we draw conclusions in

section 5.

2 Methodological considerations for implementing interval

type-2 fuzzy systems over DSC technology.

This section introduces some strategies for implementing each stage of an

Interval Type-2 Fuzzy Processor (IT2-FP) over DSC platforms. Considering

the IT2-FP general structure shown in Fig.1, fuzzification, rule base, inference

engine, type reduction, and defuzzification are treated as independent blocks.

In addition an IT2-FP is defined as N inputs, M Interval Type-2 Fuzzy Sets

(IT2-FS) by input, MA=N·M IT2-FS in the antecedents, R=M
N
 rules, and MC

IT2-FS in the consequent. Some complementary parameters are considered

like discretization of the input universe DA, discretization of output universe

DC and universe of discourse U.

2.1 Interval type-2 fuzzy sets and footprints of uncertainty

Interval type-2 fuzzy sets are completely characterized by their Footprints

of Uncertainty (FOU) [6, 18]. The FOU of an IT2-FS is described by its upper

and lower membership functions (MF). Trapezoidal FOU are considered in

this work as it is shown in Fig.2. The following computing techniques are

focused but not limited to this kind of sets. All procedures are considered

assuming a universe within a finite interval [0, U).

Leottau Forero L., Melgarejo M.

64

There are several alternatives to compute the membership grade (MG) of

an IT2-FS. Two alternatives for computing MF are presented in [2]: the mem-

ory based approach and the function computing method.

2.1.1 Function Computing Approach (FCA)

This method carries out a direct computation of MF by using numeric al-

gorithms that avoid constructing and storing look up tables. It reduces mem-

ory usage and facilitates the implementation of MF. However, its execution

could require several machine cycles depending on the complexity of MF [2].

Function computing is viable if there are enough resources to execute op-

erations in a defined running time. Handling sets whose MF are described by

linear equations is recommended in order to achieve a simpler computation, as

in the case of trapezoidal or triangular functions [2, 10, 19].

2.1.2 Memory Based Approach (MBA)

The memory based access approach stores the MGs of every possible input

value into a memory. This strategy is executed considerably fast, because it

uses the input value as the pointer to the memory and to directly retrieve the

MG. However, it is limited by the complexity of the system, because parame-

ters such as: Number of sets, resolution of MG, word length of the processor

and level of discretization drastically influence memory consumption [2]. The

memory usage of an IT2-FP can be calculated as:

 2·MA·DA + 2·MC·DC Words (1)

From (1), it can be said that using this method becomes viable if there is

enough memory to store all MFs with their respective upper and lower limits.

Figure 2. Trapezoidal IT2-FS.

2.2 Fuzzification

Singleton fuzzification is considered in this work [14]. The alternatives

proposed in section 2.1 impact directly the fuzzification process. For all cases

discussed here, results of fuzzification are stored into a memory array with the

following dimension:

A Methodological Proposal for Implementing …

65

 (2)

2.2.1 Fuzzification in the function computing method

For trapezoidal MF, every MG is computed directly by using the expres-

sion that represents these functions [2]. Four constants (a, b, c, d) are consid-

ered as off-line parameters. These are defined in a table with size 2·4·MA and

stored in memory. Computation for each boundary is carried out as follows:

 (3)

It is possible to reduce the number of operations by checking first that the

input for each set is within the interval (a, d). In this way, unnecessary com-

puting is avoided when the result of fuzzification is zero.

The parameters and are the slopes of linear functions

in intervals (a, b) and (c, d). These parameters can be handled as constant off-

line values, which are calculated to reduce the number of operations. The

constants (a, b, c, d) are stored in a three-dimensional array k_a[i][j][l],

where the indexes i, j, l, respectively refer to inputs, sets, and limits (i.e. Up-

per limit l=0 or lower limit l=1). In order to fuzzify all antecedent sets, three

nested loops are used. The internal one to sweep the Mj sets of each input, the

middle one to sweep the inputs Ni and the external loop to scan the upper and

lower limits Ll of the MF.

2.2.2 Fuzzification in the memory based approach

Fuzzification is reduced to a simple look up memory in this approach [10].

Since computation is not a problem here, memory consumption becomes cru-

cial.

If MA is the total number of antecedents IT2-FS and DA is the discretization

in the antecedents and upper and lower MF are stored separately, the non-

volatile memory consumption is:

 (MA·DA)Upper + (MA·DA)Lower =2·MA·DA Words (4)

From (4), it can be observed that memory usage is proportional to the

number of IT2-FS and grows as discretization level increases. Trapezoidal

MF are stored in a three-dimensional array A with size N·M·2·DA.

Just to give a numerical example, if it is intended to work with four T2-FS

at the maximum resolution and discretization available in a DSC platform.

Leottau Forero L., Melgarejo M.

66

DA=2
16

=65536 discretization levels are obtained in the antecedents. There-

fore, a memory space of 1,048,576 bytes is necessary.

2.3 Rule base

Rule base indicates how antecedent sets must be combined and implicated

with consequent sets [6]. Thus, a multidimensional matrix sized Min1 x...x

MinN is provided. This matrix stores the consequent set that corresponds to

each rule. The indices of antecedent sets function as pointers for locating

a particular consequent set in the matrix.

As an example let’s consider a case of N=2 inputs:

 (5)

Expression (5) implies that there are M=3 fuzzy sets {A0, A1, A2} at input

one as well as in the input two{B0, B1, B2}. There are R=9 rules {r0,…, r8} and

MC=7 fuzzy sets in the consequent {C0,…, C6}. E.g. the rule number five is:

“IF X is A1 and Y is B2 then Z is C2“. (6)

In the example, there are less consequent sets than rules because one or

more rules have the same consequent set. Note that rules one (A0,B1) and five

(A1,B2) are sharing consequent C2, whereas rules three (A1,B0) and four

(A1,B1) are sharing consequent C3.

2.4 Inference Engine

2.4.1 Mamdani inference

Mamdani inference [6, 14] is selected, because it is one of the most suit-

able methods for real time hardware operation due to its simplicity [2]. This

method uses MIN T-Norm and MAX S-Norm as implication and aggregation

operators respectively. In Mamdani implication a rule collection is given as

shown below:

 (7)

Where

The inferred conclusion is the active rule collection combination given by (8).

The activation grade of rule r is given by (9).

 (8)

A Methodological Proposal for Implementing …

67

 , (9)

where

 are the MFs sets of the inputs and

are the consequent MFs, in both cases for rule r.

2.4.2 Computing Mamdani inference

An algorithm to compute the inference engine over sequential platforms is

set out in [2] and it is adjusted for T2-FLS in [10]. A modification of this al-

gorithm is proposed here. The activation grades in the antecedents (9) are

computed with a loop that is executed before the rest of the inference engine

(8), since results of antecedents combinations are constant values along their

respective consequent sets. The modified algorithm is presented as follows:

Inference Engine Algorithm

{

 For rule r=1: rule R

 Amin[r] = min[AMVs[r]]; Obtaining the minimum of the

 antecedent membership values (AMV)

 For i=1: Dc

 {f[i]= 0;

 For rule r=1: rule R

 { Aux = CMV[Rule[r]][i]; Obtaining the consequent

 membership value (CMV)

 Aux = Min[Aux, Amin[r]];

 f[i] = Max[Aux, f[i]];

 }

 }

}

The algorithm uses two loops. The first one is used to obtain the antece-

dent of all rules. It computes the minimum among the fuzzified inputs in each

rule. Results are stored into a table with size 2·R located in memory using two

arrays Amin_u[R] for the upper boundaries and Amin_l[R] for the lower ones.

The latter computes (8) so that the minimum between (9) and the MG of the

consequent set for rule r is found. This process is executed for all rules while

aggregation is being computed by sweeping the whole universe. Since this

algorithm is proposed for IT2-FP, it must be implemented for upper and lower

boundaries.

In contrast to fuzzification, where a unique value is obtained from MF, the

entire universe must be swept for active consequent T2-FS in the inference

engine. Despite of this, it is also possible to apply the same techniques pro-

posed in section 2.1 in the inference engine. So, the inferred conclusion per

rule is an IT2-FS, which is stored in memory as an array with size 2·DC.

Leottau Forero L., Melgarejo M.

68

2.4.3 Function computing approach for inference engine

Since trapezoidal MFs are used, every crisp value is computed using (3).

Parameters of (3) are loaded off-line into a two-dimensional array
with size 2·4·MC. Where the indexes j, l, respectively refer to consequent sets

and limit. This inference engine model is executed as it is described in previ-

ous subsection, but obtaining each consequent membership value
 in (8)

by using (3).

In order to speed up the computation of this inference engine method, the

same strategy introduced in section 2.2.1 can be used here. If the pointer is not

within the interval (a, d), the MG is zero, so the inference engine computation

can be avoided for this point.

2.4.4 Memory based approach for inference engine

If both MF limits are stored individually and assuming that MC is the num-

ber of consequent sets with a word length of W bits, the data memory con-

sumption is as follows:

Data_Memmbi = (MC·DC)Upper + (MC·DC)Lower =2·MC·DC

Words
(10)

MF are stored in tables, which are handled as three-dimensional arrays

with size 2·MC·DC treated as C[j][i][l], where j, i and l refers to consequent

set MCj, upper limit l=0 or lower limit l=1 and stored membership grade MGi

respectively. This inference engine model is executed as it is described in

subsection 2.4.2, obtaining each consequent membership value
 in (8)

reading the correspondent array C.

2.5 Type Reduction and Defuzzification

There are several type-reduction alternatives such as: centroid, center of

sums, center of sets, height and modified height. Depending on the method,

there is a compromise between accuracy and computational complexity. Cen-

troid type-reduction is the most accurate method because it uses the union of

whole output sets and not just singletons. In contrast, it is the most computa-

tional expensive [6]. Thus, this type-reducer is chosen in order to obtain the

best accurate output while the hardware platform is forced to the highest com-

putational effort.

As it is mentioned in section 2.1, the universe is set in the interval [0, U).

In addition a linear discretization scheme with equidistant points is proposed

in order to reduce the computational complexity of the algorithms involved in

type-reduction. Thus, a particular point within the universe can be computed

as [10]:

A Methodological Proposal for Implementing …

69

 (11)

It implies that the execution of some divisions will be required to find x. It

is proposed to compute off-line , in order to reduce the amount

of operations, particularly avoiding divisions. On the other hand, if the size of

the universe U is equivalent to the discretization levels in the consequent Dc,

the computing complexity is reduced because x=k.

2.5.1 Enhanced Karnik Mendel algorithm(EKM)

The EKM algorithm proposed in [11] uses statistically defined values as

initialization points to reduce the amount of iterations that are necessary to

converge [6]. The algorithm verifies the stop condition before carrying out

a new computation. Therefore, one iteration is saved.

Let be and respectively the upper and lower membership grades of

an inferred interval type-2 fuzzy set and xi the points of the universe of dis-

course. Therefore, the EKM algorithm for computing the minimum limit cl of

the centroid of the set is presented as follows:

i. Set:

 (12)

 (13)

 (14)

 (15)

ii. Find k’ [1,N-1] such that xk’ ≤ y ≤ xk’+1

iii. Check if k’=k. If yes, stop, set cl = y and call L = k. Else, continue

iv. Compute s=sign(k’- k), and

 (16)

 (17)

Leottau Forero L., Melgarejo M.

70

 (18)

v. Set y = y’, D = D’, P = P’, k = k’. Go to step ii.

The observation introduced at the beginning of this subsection regarding

the linear discretization of the output universe is used in order to find the

value of k'. So, the following computation is applied:

 (19)

At the beginning of each limit procedure, is necessary to calculate the

rounding of k, using eq.(12). In order to reduce the quantity of instructions, it

is possible to set this rounding off-line and to take it as a constant whenever it

is required. The algorithm is executed using a While – Do loop. A fixed flag is

the condition that forces repeatedly the execution of the iteration within the

loop until the break condition is reached.

A similar procedure is carried out for computing the maximum limit cr of

the centroid of the IT2-FS [11]. Thus, two independent loops must be imple-

mented to obtain the type-reduced set before defuzzification.

2.5.2 Improved Iterative Algorithm with Stop Condition (IASCO)

The recursive algorithm proposed in [8,9] is used to find the upper and

lower boundaries of the centroid (cl, cr) of an IT2-FS without looking for the

switching points L and R. On the other hand, it combines exhaustive search

and iterations, which progressively increase L and R until the optimal point is

found. The stop condition of this algorithm is derived from the properties of

the centroid function. The algorithm for computing cl is presented as follows:

i. Initialization:

 (20)

 (21)

 (22)

ii. Start k=0, increase it as k=k+1 and execute ii – iii

 (23)

A Methodological Proposal for Implementing …

71

 (24)

 (25)

iii. If cl ≤ cmin then cmin = cl(k). Else stop computations and

set cl = cmin
(26)

The variable k is used as a pointer. Parameter x is directly related to k re-

garding (11). The upper and lower limits of the inferred set are two vectors,

which are accessed using the pointer k. Results from intermediate expressions

(23)-(25) are handled as crisp values, which are updated iteration after itera-

tion. Thus, using few registers as temporal variables is enough. Two inde-

pendent searching loops are implemented for cl and cr.

2.5.3 Defuzzification

Once type-reduction has found the limits of the centroid, defuzzification

computes the mean between cl and cr to obtain the crisp output of the IT2-FP

[6]. No division is required here since it can be replaced by a shift-right opera-

tion, which is faster in specialized embedded processors like DSCs.

3 Implementation study

This section introduces some aspects about the hardware implementation

of the models proposed in the previous section. Characteristics of processors

to be implemented are previously defined as well as the available hardware

resources of the DSC technology.

3.1 Implementation parameters

This implementation study is done based on a system with the following

characteristics: Two inputs, three type-2 interval fuzzy sets by input, nine

rules, one interval type-2 fuzzy set in the consequent by each rule and DA and

Dc discretization levels for antecedent and consequent universes respectively.

The IT2-FS used and its parameters are shown in Fig.3 and Table 1. These are

chosen in this way in order to cover the whole universe. The universe is set

between [0, U), where U is limited to a thousand points.

Implementation is developed in C language. Therefore, maximum and

minimum functions are carried out using if then sentences to compare and to

determine the greater value for MAX function or the smaller one for MIN

function. Besides, index and pointers of tables, arrays, vectors and matrix,

start from position zero.

Leottau Forero L., Melgarejo M.

72

Since this is a two-input system with three fuzzy sets by input, a 3x3

square matrix is set. For this system the following matrix is implemented:

 (27)

Then, the matrix implies the following rule collection:

 1

 1
1 1 1

1 1

 2
2 1 2

2 2

 3 1
3 1

3 3

(28)

Table 1. Parameters per IT2-FSs shown in Fig.3.

A0 A1 A2 B0 B1 B2

aa -304 -256 160 208 624 672 -416 -320 64 160 544 640

ba -48 0 416 464 880 928 -128 -32 352 448 832 928

ca 208 160 672 624 1136 1088 160 64 640 544 1120 1024

da 464 416 928 880 1392 1344 448 352 928 832 1408 1312

C0 C1 C2 C3 C4 C5 C6 C7 C8

ac -112 -96 16 32 144 160 272 288 400 416 528 544 656 672 784 800 912 928

bc -32 -16 96 112 224 240 352 368 480 496 608 624 736 752 864 880 992 1008

cc 32 16 160 144 288 272 416 400 544 528 672 656 800 784 928 912 1056 1040

dc 112 96 240 224 368 352 496 480 624 608 752 736 880 864 1008 992 1136 1120

A Methodological Proposal for Implementing …

73

a)

b)

Figure 3. Type-2 Fuzzy sets used: a) Antecedents, and b) Consequent.

3.2 Performance indices

Three performance indices are defined in this implementation study. These

are:

Memory usage: the memory consumption per processor stage is computed

from (2), (4) and (10).

Instructions (Inst): Since the code is written in C language, this parame-

ter is different from the amount of assembly instructions. This parameter ex-

clusively refers to the amount of code instructions demanded by an imple-

mented algorithm.

Clock Cycles (ClkC): This parameter refers to the amount of clock cycles

employed by a processor to execute an algorithm. To obtain the time (in sec-

onds) demanded by any process, clock cycles must be divided by the fre-

quency of processor´s clock as follows:

 (29)

Absolute error: In order to obtain this parameter, a Microsoft ™ EX-

CEL® based model with Dc=1000 is used as reference. The absolute error is

given by:

 , (30)

where Vref is the crisp output of the type-2 fuzzy processor in EXCEL® and

Vobt is the crisp output obtained from the processor implemented over DSC

technology.

Leottau Forero L., Melgarejo M.

74

Table 2. Maximum and minimum available hardware resources of DSP56800E family

 From Chip Up to Chip

Clock frequency 32Mhz 56F80XX 120Mhz 5685X

Program memory 12 KB 56F8011 512 KB 56F836X - 56F816X

RAM memory 1K x 16-bit 56F8011 40K x 16-bit 56858

Data memory 2K x 16-bit 56F801 16K x 16-bit 56F836X

Word length 16 bits

3.3 Hardware Resources

Implementation is carried out over the Freescale™ DSP56800E® family.

It provides low-cost, low-power, mid-performance computing, combining

DSP signal processing power and parallelism, microcontroller functionality

and several flexible integrated peripherals. The DSP56800E architecture is

based on the parallel execution of three operative units: A data arithmetic

logic unit (ALU), an address generation unit (AGU) and a program controller

[7]. The available hardware resources of this DSC family are shown in Table 2.

3.4 Tests

Two different strategies for fuzzification, inference engine and type-

reduction are considered. Eight possible combinations of different processors

are obtained as it is described in Table 3. Each processor is validated first

using a Microsoft™ Excel® model. Then, it is programmed in C Code, simu-

lated and debugged by means of the CodeWarrior® software suite. Finally,

the processor is loaded on the DSC platform.

The performance indices of each processor are obtained as follows:

1. Set the code on the simulation and on-chip debugging software tool

CodeWarrior® v.8.23.

2. Run one complete inference and register separately the number of instruc-

tions and clock cycles demanded by the fuzzyfier, inference engine and

output processor.

3. Record the output value obtained.

4. Compute the absolute error using eq. (30)

5. Repeat 10 times steps 2 – 4 with different input values.

6. Find the average and standard deviation of the instructions, clock cycles

and the absolute error.

7. Repeat the procedure for the following discretization levels: DC=10;

DC=100; DC=1000.

A Methodological Proposal for Implementing …

75

Table 3. Eight possible processors

 Fuzzyfier Inference Engine Type reducer

Processor 1 Function based Memory based EKM

Processor 2 Function based Memory based IASCO

Processor 3 Memory based Memory based EKM

Processor 4 Memory based Memory based IASCO

Processor 5 Function based Function based EKM

Processor 6 Function based Function based IASCO

Processor 7 Memory based Function based EKM

Processor 8 Memory based Function based IASCO

4 Implementation results and discussion

4.1 Implementation results

In this section, implementation results are presented in Tables 4-8 and Fig-

ures 4-6. Memory usage of each strategy implemented per stage of the IT2-FP

is presented in Table 4 for fuzzyfiers and rule collection and Table 5 for infer-

ence engine. Besides, Figure 4 presents the total memory consumption of the

eight IT2-FP. Results of clock cycles and instructions demanded by each

strategy are presented in Table 6 for fuzzyfiers, Table 7 for inference engines

and Table 8 for output processors. In addition, Figure 5 presents the total

clock cycles and instructions demanded by the eight processors. Finally, Fig-

ure 6 presents the absolute error of eight implemented processors.

4.2 Discussion

It can be observed about fuzzification that data memory usage in FCA is

smaller than data memory usage in MBA. The FCA uses about 0.4% of the

MBA resources. However, MBA fuzzyfier is about 2.5 times faster than FCA

based fuzzyfier.

Data memory usage of MBA inference engine increases linearly with dis-

cretization levels in the consequent Dc. On the contrary, the FCA memory

usage is constant and it is independent of the discretization levels in the output

universe.
FCA is almost as fast as MBA inference engine. FCA is about 0.3% slower

for Dc=10, 4% slower for Dc=100 and about 5% slower for Dc=1000. Theo-

retically, the MBA is faster than FCA [2]. However, the implementation strat-

egy proposed in section 2.4.3 speeds up FCA inference engine. Saving com-

putations when MFs are zero compensates the operations demanded by com-

puting equation (3). However, the data memory usage in FCA is about 20% of

the MBA for Dc=10, 2% for Dc=100 and about 0.2% for Dc=1000.

Leottau Forero L., Melgarejo M.

76

EKM algorithm is about 1.4 times faster than IASCO for Dc=10 and about

2.2 times faster for Dc=1000. It is especially interesting because [8] shows

that IASCO outperforms the EKM algorithm in general purpose microproces-

sors. This difference can be explained because the first one executes more

divisions than the latter. The DSC technology used in this implementation

study does not include any dedicated divider. So, divisions are computed by

means of software subroutines, which are typically slower than dedicated

hardware units.

According to Table 2 and Fig 5(a), an Interval type-2 fuzzy processor like

the one considered in this study would exhibit a global inference time between

139.6 s and 5.89 ms. These times are obtained from the fastest processor (i.e.

Dc = 10, MBA in fuzzification, MBA in inference engine and EKM type-

reduction) and the slowest processor (i.e. Dc=1000, FCA in fuzzification,

FCA in inference engine and IASCO type-reduction) respectively. Since in-

ference times are in the scale of hundred of microseconds and milliseconds,

these processors can be used as fuzzy controllers in control applications [14,

12, 17].

Other works have reported implementations of type-2 fuzzy systems over

embedded processors. Coupland et al [13] implemented a general type-2

fuzzy controller with nine rules over a Microchip(c) PIC24F platform achiev-

ing an inference time of 306 ms. Besides, Bulla et al [10] developed an inter-

val type-2 fuzzy system with 4 rules over a Freescale MC68HC908AP32

whose inference time is about 34.29 ms. The results obtained in this study

show that inference time for type-2 fuzzy systems can be set in the order of

microseconds by using a combination of faster technologies and computing

strategies.

From Figure 6, it can be said that processors implemented with FCA fuz-

zyfier generate higher error than processors with MBA fuzzyfier. The average

among absolute errors of the three discretization levels of processors P1, P5

and P6 is about 5.6. These processors are the less accurate regarding the soft-

ware reference. This measure is about 5.7% greater than the obtained by proc-

essor P7, which is the most accurate.

Table 4. Results for memory usage of fuzzyfiers ad rule collection.

Fuzzyfier
Data memory

(Bytes)
RAM (Bytes)

Memory based approach 24000 24

Function computing approach 96 24

Rule collection 18 36

A Methodological Proposal for Implementing …

77

Table 5. Results for memory usage of inference engine

 Memory based approach Function computing approach

Dc
Data memory

(Bytes)

RAM memory

(Bytes)

Data memory

(Bytes)

RAM memory

(Bytes)

10 360 40 72 40

100 3600 400 72 400

1000 36000 4000 72 4000

Table 6. Results of clock cycles and instructions demanded by fuzzyfier

Fuzzyfier ClkC. Desv. ClkC. Instr. Desv. Instr.

Memory based approach 883.20 2.53 498.70 0.95

Function comp. approach 2215.30 301.42 1203.90 177.06

Table 7. Results of clock cycles and instructions demanded by inference engine.

 Dc ClkC Desv. ClkC Instr. Desv. Instr.

Memory

based

approach

10 13078.90 31.54 6274.40 26.90

100 117468.30 220.31 55182.80 215.30

1000 1153346.30 2174.70 539274.80 2143.98

Function

comp.

approach

10 13120.70 29.97 6488.20 25.98

100 122374.10 213.42 59507.60 211.56

1000 1213775.40 2084.25 587190.40 7550.41

Table 8. Results of Clock cycles and instructions demanded by type-reduction

 Dc ClkC Desv. ClkC Instr. Desv. Instr.

EKM

10 2798.50 440.97 1732.50 278.99

100 18379.90 1887.29 10709.50 1093.83

1000 138733.00 15146.48 76699.70 8457.46

IASCO

10 4003.60 1199.25 2768.80 879.11

100 34327.60 11755.05 23638.30 8617.05

1000 315129.40 111793.85 217500.50 82348.15

Leottau Forero L., Melgarejo M.

78

a)

b)

Figure 4. Memory usage for the eight processors: a) Data Memory, and b) RAM

a)

b)

A Methodological Proposal for Implementing …

79

Figure 5. For the eight processors: a) Clock cycles, and b) Instructions.

a)

b)

Figure 6. For the eight processors: a) Absolute Error, and b) Standard deviation

of AE.

5 Conclusions

Some methodological considerations for implementing interval type-2

fuzzy processors over DSC technology have been described. These allowed

implementing eight interval type-2 fuzzy processors considering three differ-

ent levels of discretization in the consequent. The processors were fully char-

acterized and tested. Results show that the inference time of a type-2 fuzzy

system running over an embedded processor can be set in the order of micro-

seconds by combining fast technologies like DSC and computing strategies.

Several possibilities for implementing IT2-FLS based on two strategies for

fuzzification, inference engine and type-reduction can be derived directly

from this work. Thus, a practitioner or an engineer can choose one of these

Leottau Forero L., Melgarejo M.

80

regarding some parameters of the target application like inference time, accu-

racy, resolution and available computing and memory resources.

Since this work is an introduction to the implementation of IT2-FP over

DSC platforms, possibilities to improve the parameters of a type-2 processor,

such as inference time and memory resource are open. Besides, methodologi-

cal aspects proposed in this work could be used as a reference to carry out

implementations of IT2-FP over more powerful DSP platforms.

References

1. Mendel J. M., 2007, Advances In Type-2 Fuzzy Sets and Systems, Information

Sciences, 177,1, pp. 84-110.

2. Baturone I. et al, 2000, Microelectronics Design Of Fuzzy Logic-Based Systems,

CRC Press LLC, London.

3. Mendel J. M., 2007, Type-2 Fuzzy Sets and Systems: An Overview, IEEE Com-

putational Intelligence Magazine, 2,1, pp. 20–29.

4. John R. and Coupland S., 2007, Type-2 Fuzzy Logic A Historical View, IEEE

Computational Intelligence Magazine, 2,1, pp. 57-62.

5. Melgarejo M., Pena-Reyes C. A., 2007, Implementing Interval Type-2 Fuzzy

Processors, IEEE Computational Intelligence Magazine, 2,1, pp. 63-71.

6. Mendel J. M., 2000, Uncertain Rule-Based Fuzzy Logic Systems: Introduction

and New Directions, Prentice Hall, New Jersey.

7. Freescale Semiconductor, Http://www.Freescale.Com/Dsc, Digital Signal Con-

troller 56800/E Reference. Revised on jan-2010.

8. Duran K., Bernal H. and Melgarejo M., 2008, Improved Iterative Algorithm For

Computing The Generalized Centroid Of An Interval Type-2 Fuzzy Set, Proceed-

ings of NAFIPS 2008, New York City, pp. 1-5.

9. Melgarejo M., 2007, A Fast Recursive Method to Compute the Generalized

Centroid of an Interval Type-2 Fuzzy Set, Proceedings of NAFIPS 2007, San Di-

ego, California, pp. 190 – 194.

10. Bulla J., Sierra G. and Melgarejo M., 2008, Implementing A Simple Microcon-

troller-Based Interval Type-2 Fuzzy Processor, Proceedings of the IEEE 51th

Middle West symposium on Circuits and Systems International Symposium,

Knoxville, TN, pp. 69-72.

11. Dongrui W., Mendel J., 2009, Enhanced Karnik-Mendel Algorithms, IEEE

Transactions on Fuzzy Systems, 17, pp. 923-934.

12. Lynch C., Hagras H. and Callaghan V., 2007, Parallel Type-2 Fuzzy Logic Co-

Processors for Engine Management, Proceedings of the 2007 IEEE International

Conference on Fuzzy Systems, London, UK, pp. 907-912.

13. Coupland S., Wheeler J. and Gongora M., 2008, A Generalised Type-2 Fuzzy

Logic System Embedded Board and Integrated Development Environment, Pro-

A Methodological Proposal for Implementing …

81

ceedings of the 2008 IEEE International Conference on Fuzzy Systems, Hong

Kong, China, pp. 681-687.

14. Wang L. X., 1997, A Course in Fuzzy Systems And Control, Prentice Hall, New

Jersey.

15. Sepulveda R., et al, 2009, Modeling and Simulation of the Defuzzification Stage

of a Type-2 Fuzzy Controller Using the Xilinx System Generator and Simulink,

In: Evolutionary Design of Intelligent Systems, (Eds), SCI 257, Springer-Verlag,

Berlin Heidelberg, pp. 309–325.

16. Melgarejo M., Garcia A. and Pena-Reyes C., 2004, Pro-two: a hardware based

platform for real-time Type-2 fuzzy inference, Proceedings of the 2004 IEEE In-

ternational conference on Fuzzy Systems, Budapest, Hungry, pp. 977-982.

17. Hagras H., 2007, Type-2 FLC’s: a New Generation of Fuzzy Controllers, IEEE

Computational Intelligence Magazine, February 2007, pp. 30-43.

18. Karnik N. and Mendel J., 2001, Centroid of a Type-2 Fuzzy Set, Information

Sciences, vol. 132, pp. 195-220.

19. Leottau L., Melgarejo M., 2010, Implementing an Interval Type-2 Fuzzy Proces-

sor onto a DSC 56F8013, Proceedings of the 2010 IEEE International confe-

rence on Fuzzy Systems, (in press).

20. Castro J., Castillo O., Melin P. ,2007, An Interval Type-2 Fuzzy Logic Toolbox

for Control Applications, Proceedings of the 2007 IEEE International confe-

rence on Fuzzy Systems, London, UK, pp. 1-6.

