Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The marine sector is one of the main pillars of world trade but it greatly pollutes the environment. Therefore, sustainable maritime is emerging as a key tactic to lower greenhouse gas emissions and support green logistics. Indeed, the approaches, initiatives, and technical developments influencing the direction of sustainable shipping are investigated in this study. Along with developments in ecologically friendly vessel designs and energy-efficient propulsion systems, this research evaluates the applicability of alternative fuels, such as liquefied natural gas (LNG), hydrogen, ammonia, and biofuels, as green solutions for sustainable maritime and green logistics. Furthermore, the influence of regulatory systems is examined, including the guidelines established by the International Maritime Organisation on promoting sustainability in the maritime industry. A hybrid fuzzy-TOPSIS approach is used to determine what alternative fuel is the best and available to aid in the objectives of sustainable maritime and green logistics. As a result, the performance scores using the Fuzzy-TOPSIS approach show that Biofuels (A1) achieved the highest score (0.689), followed by hydrogen (A2) at 0.492. Ammonia (A3) and LNG (A4) scored 0.441 and 0.466, respectively, indicating that biofuels are the most preferred alternative for sustainable energy selection, in terms of sustainable maritime and green logistics.
Czasopismo
Rocznik
Tom
Strony
156--174
Opis fizyczny
Bibliogr. 154 poz., rys., tab.
Twórcy
autor
- Dong Nai Technology University, Viet Nam
autor
- Academy of Politics Region II, Ho Chi Minh City, Viet Nam
autor
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
autor
- Faculty of International Maritime Studies, Kasetsart University, Sri Racha Campus, Chonburi, Thailand
autor
- Chemical Engineering Department, Faculty of Engineering, Diponegoro University, Indonesia
autor
- Faculty of Marine Engineering, Gdynia Maritime University, Gdynia, Poland
autor
- Faculty of International Trade, College of Foreign Economic Relation, Ho Chi Minh City, Viet Nam
autor
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam,
Bibliografia
- 1. Vu VV, Le PT, Do TMT, Nguyen TTH, Tran NBM, Paramasivam P, et al. An insight into the Application of AI in maritime and Logistics toward Sustainable Transportation. JOIV Int J Informatics Vis 2024;8:158–74. https://doi.org/10.62527/joiv.8.1.2641.
- 2. Nguyen HP, Nguyen CTU, Tran TM, Dang QH, Pham NDK. Artificial Intelligence and Machine Learning for Green Shipping: Navigating towards Sustainable Maritime Practices. JOIV Int J Informatics Vis 2024;8:1. https://doi.org/10.62527/joiv.8.1.2581.3. Allianz Global Corporate & Specialty. Safety and Shipping Review 2015. 2015.
- 4. O’Leary BC, Fonseca C, Cornet CC, de Vries MB, Degia AK, Failler P. Embracing Nature-based Solutions to promote resilient marine and coastal ecosystems. Nature- Based Solut 2023;3:100044. https://doi.org/10.1016/j.nbsj.2022.100044.
- 5. Hoang AT, Tran VD, Dong VH, Le AT. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. J Mar Eng Technol 2022;21:73–81. https://doi.org/10.1080/20464177.2019.1595355.
- 6. Roh M-I, Lee K-Y. Computational Ship Design. Singapore: Springer Singapore; 2018. https://doi.org/10.1007/978-981-10-4885-2.
- 7. Tarelko W, Rudzki K. Applying artificial neural networks for modelling ship speed and fuel consumption. Neural Comput Appl 2020;32:17379–95. https://doi.org/10.1007/s00521-020-05111-2.
- 8. Han Y, Ma W, Ma D. Green maritime: An improved quantum genetic algorithm-based ship speed optimization method considering various emission reduction regulations and strategies. J Clean Prod 2023;385:135814. https://doi.org/10.1016/j.jclepro.2022.135814.
- 9. Vakili S, Olcer AI, Schonborn A, Ballini F, Hoang AT. Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study. Int J Energy Res 2022;46:20624–49. https://doi.org/10.1002/er.7649.
- 10. Bjerkan KY, Seter H. Reviewing tools and technologies for sustainable ports: Does research enable decision making in ports? Transp Res Part D Transp Environ 2019;72:243–60. https://doi.org/10.1016/j.trd.2019.05.003.
- 11. Nguyen VN, Rudzki K, Marek D, Pham NDK, Pham MT, Nguyen PQP. Understanding fuel saving and clean fuel strategies towards green maritime. Polish Marit Res 2023;30:146–64. https://doi.org/10.2478/pomr-2023-0030. 12. Wang C, Wang L. Green investment and vertical alliances in the maritime supply chain. Environ Dev Sustain 2023;25:6657–87. https://doi.org/10.1007/s10668-022-02322-6.
- 13. Yang C-S. Evaluating the use of alternative Maritime power in Taiwan. Marit Bus Rev 2016;1:208–24. https://doi.org/10.1108/MABR-08-2016-0016.
- 14. Yu H, Fang Z, Fu X, Liu J, Chen J. Literature review on emission control-based ship voyage optimization. Transp Res Part D Transp Environ 2021;93:102768. https://doi.org/10.1016/j.trd.2021.102768.
- 15. Ashrafi M, Lister J, Gillen D. Toward a harmonization of sustainability criteria for alternative marine fuels. Marit Transp Res 2022;3:100052. https://doi.org/10.1016/j.martra.2022.100052.
- 16. Duran C, Yazdi AK, Derpich I, Tan Y. Leveraging Blockchain for Maritime Port Supply Chain Management through Multicriteria Decision Making. Mathematics 2024;12:1511. https://doi.org/10.3390/math12101511.
- 17. Singh S, Dwivedi A, Pratap S. Sustainable Maritime Freight Transportation: Current Status and Future Directions. Sustainability 2023;15:6996. https://doi.org/10.3390/su15086996.
- 18. Efimova A, Saini M. Assessing carbon emissions reduction by incorporating automated monitoring system during transit: a case study. Acta Logist 2023;10:79–88. https://doi.org/10.22306/al.v10i1.357.
- 19. Garg CP, Kashav V, Wang X. Evaluating sustainability factors of green ports in China under fuzzy environment. Environ Dev Sustain 2023;25:7795–821. https://doi.org/10.1007/s10668-022-02375-7.
- 20. Syahrianda DA, Suadi S, Djumanto D. Service excellence at sea: User satisfaction with Belawan Samudera Fishing Port, Indonesia. Marit Technol Res 2024;7:270067. https:// doi.org/10.33175/mtr.2025.270067.
- 21. Wu X, Zhang L, Luo M. Current strategic planningfor sustainability in international shipping. Environ Dev Sustain 2020;22:1729–47. https://doi.org/10.1007/s10668-018-00303-2.
- 22. Rudzki K, Gomulka P, Hoang AT. Optimization Model to Manage Ship Fuel Consumption and Navigation Time. Polish Marit Res 2022;29:141–53. https://doi.org/10.2478/pomr-2022-0034.
- 23. Nguyen VN, Chung N, Balaji GN, Rudzki K, Hoang AT. Internet of things-driven approach integrated with explainable machine learning models for ship fuel consumption prediction. Alexandria Eng J 2025;118:664–80. https://doi.org/10.1016/j.aej.2025.01.067.
- 24. Zhu M, Yuen KF, Ge JW, Li KX. Impact of Maritime emissions trading system on fleet deployment and mitigation of CO2 emission. Transp Res Part D Transp Environ 2018;62:474–88. https://doi.org/10.1016/j.trd.2018.03.016.
- 25. Clydebank Declaration. COP26: Clydebank Declaration for green shipping corridors. 2023.
- 26. Zalina MN, Siti KK, Siti RSA. Improve Waste Heat Recovery and Performance of Organic Rankine Cycle Analysis for Exhaust Gas from A Marine Diesel Engine Using Biofuel from Algae. J Adv Res Appl Sci Eng Technol 2023;29:1–20. https://doi.org/10.37934/araset.29.3.120.
- 27. Agarwala N. Is hydrogen a decarbonizing fuel for maritime shipping? Marit Technol Res 2024;6:271244. https://doi.org/10.33175/mtr.2024.271244.
- 28. Tan ECD, Hawkins TR, Lee U, Tao L, Meyer PA, Wang M, et al. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses. Environ Sci Technol 2021;55:7561–70. https://doi.org/10.1021/acs.est.0c06141.
- 29. van der Kroft DFA, Pruyn JFJ. A Study into the Availability, Costs and GHG Reduction in Drop-In Biofuels for Shipping under Different Regimes between 2020 and 2050. Sustainability 2021;13:9900. https://doi.org/10.3390/su13179900.
- 30. Liu Z, Liu C, Hou Y, Chen S, Xiao D, Zhang J, et al. Isolation and Characterization of a Marine Microalga for Biofuel Production with Astaxanthin as a Co-Product. Energies 2013;6:2759–72. https://doi.org/10.3390/en6062759.
- 31. Balcombe P, Staffell I, Kerdan IG, Speirs JF, Brandon NP, Hawkes AD. How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis. Energy 2021;227:120462. https://doi.org/10.1016/j.energy.2021.120462.
- 32. Lee H-J, Yoo S-H, Huh S-Y. Economic benefits of introducing LNG-fuelled ships for imported flour in South Korea. Transp Res Part D Transp Environ 2020;78:102220. https://doi.org/10.1016/j.trd.2019.102220.
- 33. Fernandez IA, Gomez MR, Gomez JR, Lopez-Gonzalez LM. Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System. Polish Marit Res 2020;27:83–95. https://doi.org/10.2478/pomr-2020-0009.
- 34. Olszewski W, Dzida M, Nguyen VG, Cao DN. Reduction of CO2 Emissions from Offshore Combined Cycle Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels. Polish Marit Res 2023;30:71–80. https://doi.org/10.2478/pomr-2023-0040.
- 35. Lim T-W, Hwang D-H, Choi Y-S. Design and optimization of a steam methane reformer for shipbased hydrogen production on LNG-fueled ship. Appl Therm Eng 2024;243:122588. https://doi.org/10.1016/j.applthermaleng.2024.122588.
- 36. Naquash A, Riaz A, Qyyum MA, Aziz M, Assareh E, Lee M. Liquid hydrogen storage and regasification proces integrated with LNG, NGL, and liquid helium production. Renew Energy 2023;213:165–75. https://doi.org/10.1016/j.renene.2023.05.122.
- 37. Nguyen VG, Tran MH, Paramasivam P, Le HC, Nguyen DT. Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. Int J Adv Sci Eng Inf Technol 2024;14:268–86. https://doi.org/10.18517/ijaseit.14.1.17489.
- 38. Jeyakumar N, Hoang AT, Nižetić S, Balasubramanian D, Kamaraj S, Lakshmana Pandian P. Experimental investigation on simultaneous production of bioethanol and biodiesel from macro-algae. Fuel 2022;329:125362. https://doi.org/10.1016/j.fuel.2022.125362.
- 39. Le TT, Kumar R, Roy MK, Mishra MK, Mahto PK, Balasubramanian D, et al. An Experimental Assessment of Waste Transformer Oil and Palm Oil Biodiesel Blended with Diesel Fuel on A Single Cylinder Direct in Diesel Engine. Int J Adv Sci Eng Inf Technol 2024;14:246–58. https://doi.org/10.18517/ijaseit.14.1.15998.
- 40. Hoang AT, Sirohi R, Pandey A, Nižetić S, Lam SS, Chen W-H, et al. Biofuel production from microalgae: challenges and chances. Phytochem Rev 2023;22:1089–1126. https://doi.org/10.1007/s11101-022-09819-y.
- 41. Baldelli M, Bartolucci L, Cordiner S, De Maina E, Mulone V. Toward carbon neutral fuels: Process analysis of integrated biomass conversion routes for sustainable biofuels production. Energy 2025;324:136077. https://doi.org/10.1016/j.energy.2025.136077.
- 42. Carlson NA, Talmadge MS, Tan ECD, Newes EK, McCormick RL. Refinery Perspective on Decarbonizing with Marine Biofuels. Energy & Fuels 2023;37:14411–20. https://doi.org/10.1021/acs.energyfuels.3c02460.
- 43. Tanzer SE, Posada J, Geraedts S, Ramirez A. Lignocellulosic marine biofuel: Technoeconomic and environmental assessment for production in Brazil and Sweden. J Clean Prod 2019;239:117845. https://doi.org/10.1016/j.jclepro.2019.117845.
- 44. Chiriboga G, De La Rosa A, Molina C, Velarde S, Carvajal C G. Energy Return on Investment (EROI) and Life Cycle Analysis (LCA) of biofuels in Ecuador. Heliyon 2020;6:e04213. https://doi.org/10.1016/j.heliyon.2020.e04213.
- 45. Samso R, Crespin J, Garcia-Olivares A, Sole J. Examining the Potential of Marine Renewable Energy: A Net Energy Perspective. Sustainability 2023;15:8050. https://doi.org/10.3390/su15108050.
- 46. Boretti A, Banik BK. Advances in Hydrogen Production from Natural Gas Reforming. Adv Energy Sustain Res 2021;2. https://doi.org/10.1002/aesr.202100097.
- 47. Hoang AT, Huang Z, Nižetić S, Pandey A, Nguyen XP, Luque R,. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. Int J Hydrogen Energy 2022;47:4394–425. https://doi.org/10.1016/j.ijhydene.2021.11.091.
- 48. Hoang AT, Pandey A, Chen W-H, Ahmed SF, Nižetić S, Ng KH. Hydrogen Production by Water Splitting with Support of Metal and Carbon-Based Photocatalysts. ACS Sustain Chem Eng 2023;11:1221–52. https://doi.org/10.1021/acssuschemeng.2c05226.
- 49. Le TT, Jain A, El-Shafay AS, Bora BJ, Sharma P, Nguyen XP, Duong XQ, Torres PM, Hoang AT. Comprehensive analysis of waste-to-hydrogen technologies integrated with circular economy principles: Potential and challenges. Int J Hydrogen Energy 2025. https://doi.org/10.1016/j.ijhydene.2025.01.048.
- 50. Lindorfer J, Rosenfeld DC, Bohm H. Fuel Cells. Futur. Energy, Elsevier; 2020, p. 495–517. https://doi.org/10.1016/B978-0-08-102886-5.00023-2.
- 51. Sharma P, Jain A, Bora BJ, Balakrishnan D, Show PL, Ramaraj R. Application of modern approaches to the synthesis of biohydrogen from organic waste. Int J Hydrogen Energy 2023;48:21189–213. https://doi.org/10.1016/j.ijhydene.2023.03.029.
- 52. Hoang AT, Pandey A, Lichtfouse E, Bui VG, Veza I, Nguyen HL. Green hydrogen economy: Prospects and policies in Vietnam. Int J Hydrogen Energy 2023;48:31049–62. https://doi.org/10.1016/j.ijhydene.2023.05.306.
- 53. Kovač A, Paranos M, Marciuš D. Hydrogen in Energy transition: A review. Int J Hydrogen Energy 2021;46:10016–35. https://doi.org/10.1016/j.ijhydene.2020.11.256.
- 54. Lee J-S, Cherif A, Yoon H-J, Seo S-K, Bae J-E, Shin H-J, et al. Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation. Renew Sustain Energy Rev 2022;165:112556. https://doi.org/10.1016/j.rser.2022.112556.
- 55. Bicer Y, Dincer I. Environmental impact categories of hydrogen and ammonia driven transoceanic Maritime vehicles: A comparative evaluation. Int J Hydrogen Energy 2018;43:4583–96. https://doi.org/10.1016/j.ijhydene.2017.07.110.
- 56. Nguyen XP, Bora BJ, Olcer AI, Sharma P, Nguyen VN, Cao DN. Effect of compression ratio on dual-fuel diesel engine fueled with ammonia: Experimental and statistical analysis. Process Saf Environ Prot 2025;195:106810. https://doi.org/10.1016/j.psep.2025.106810.
- 57. Ahmed S, Li T, Yi P, Chen R. Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations. Renew Sustain Energy Rev 2023;188:113774. https://doi.org/10.1016/j.rser.2023.113774.
- 58. Gerlitz L, Mildenstrey E, Prause G. Ammonia as Clean Shipping Fuel for the Baltic Sea Region. Transp Telecommun J 2022;23:102–12. https://doi.org/10.2478/ttj-2022-0010.
- 59. Salmon N, Banares-Alcantara R. A global, spatially granular techno-economic analysis of offshore green ammonia production. J Clean Prod 2022;367:133045. https://doi.org/10.1016/j.jclepro.2022.133045.
- 60. Ye M, Sharp P, Brandon N, Kucernak A. System-level comparison of ammonia, compressed and liquid hydrogen as fuels for polymer electrolyte fuel cell powered shipping. Int J Hydrogen Energy 2022;47:8565–84. https://doi.org/10.1016/j.ijhydene.2021.12.164.
- 61. Chen W, Wang H, Liu X. Experimental investigation of the aerodynamic performance of Flettner rotors for marine applications. Ocean Eng 2023;281:115006. https://doi.org/10.1016/j.oceaneng.2023.115006.
- 62. Seddiek IS, Ammar NR. Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers. Environ Sci Pollut Res 2021;28:32695–707. https://doi.org/10.1007/s11356-021-12791-3.
- 63. Traut M, Gilbert P, Walsh C, Bows A, Filippone A, Stansby P, et al. Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes. Appl Energy 2014. https://doi.org/10.1016/j.apenergy.2013.07.026.
- 64. Vidović T, Šimunović J, Radica G, Penga Ž. Systematic Overview of Newly Available Technologies in the Green Maritime Sector. Energies 2023;16:641. https://doi.org/10.3390/en16020641.
- 65. Rudzki K, Tarelko W. A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller. Ocean Eng 2016;126:254–64. https://doi.org/10.1016/j.oceaneng.2016.09.018.
- 66. Kołodziej R, Hoffmann P. Determination of Propeller- Rudder-Hull Interaction Coefficients in Ship Manoeuvring Prediction. Polish Marit Res 2024;31:15–24. https://doi.org/10.2478/pomr-2024-0032.
- 67. Nguyen PQP, Nguyen DT, Yen NHT, Le Q, Nguyen NT, Khoa Pham ND. Machine Learning-Driven Insights for Optimizing Ship Fuel Consumption: Predictive Modeling and Operational Efficiency. Int J Adv Sci Eng Inf Technol 2025;15:27–35. https://doi.org/10.18517/ijaseit.15.1.12374.
- 68. Ghaemi MH, Zeraatgar H. Impact of Propeller Emergence on Hull, Propeller, Engine, and Fuel Consumption Performance in Regular Head Waves. Polish Marit Res 2022;29:56–76. https://doi.org/10.2478/pomr-2022-0044.
- 69. Nakielski J. Analysis of the Environmental Impact of the Hull Construction of a Small Vessel Based on LCA. Polish Marit Res 2023;30:54–60. https://doi.org/doi:10.2478/pomr-2023-0058.
- 70. Huynh VC, Tran GT. Improving the accuracy of ship resistance prediction using computational fluid dynamics tool. Int J Adv Sci Eng Inf Technol 2020;10:171–7. https://doi.org/10.18517/ijaseit.10.1.10588.
- 71. Peng H, Zhu X, Yang L, Zhang G. Robust controller design for marine electric propulsion system over controller area network. Control Eng Pract 2020;101:104512. https://doi.org/10.1016/j.conengprac.2020.104512.
- 72. Zhang X, Xu X, Xu X, Hou P, Gao H, Ma F. Intelligent Adaptive PID Control for the Shaft Speed of a Marine Electric Propulsion System Based on the Evidential Reasoning Rule. Mathematics 2023;11:1145. https://doi.org/10.3390/math11051145.
- 73. Nguyen HP, Hoang AT, Nizetic S, Nguyen XP, Le AT, Luong CN. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. Int Trans Electr Energy Syst 2021;31:e12580. https://doi.org/10.1002/2050-7038.12580.
- 74. Wang S, Dai J, Wang J, Li R, Wang J, Xu Z. Numerical calculation of high-strength-steel saddle plate forming suitable for lightweight construction of ships. Materials (Basel) 2023;16:3848.
- 75. Xiong J, Gong C, Wu Q, Ma L, Yang J, Wu L. Design, fabrication, and dynamic mechanical responses of fiberreinforced composite lattice materials. Int J Mech Syst Dyn 2023;3:213–28. https://doi.org/10.1002/msd2.12085.
- 76. Nguyen VN, Nguyen AX, Nguyen DT, Le HC, Nguyen VP. A Comprehensive Understanding of Bainite Phase Transformation Mechanism in TRIP Bainitic-supported Ferrite Steel. Int J Adv Sci Eng Inf Technol 2024;14:309–25. https://doi.org/10.18517/ijaseit.14.1.19706.
- 77. Hoang AT. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl Energy 2018;231:138–66. https://doi.org/10.1016/j.apenergy.2018.09.022.
- 78. Nguyen TH, Duong XQ, Bui VH, Rudzki K, Nguyen VN, Hai TT. Exhaust Gas Heat Recovery from a Marine Engine Using a Thermal Oil System. Polish Marit Res 2024;31:89–99. https://doi.org/10.2478/pomr-2024-0053.
- 79. Tuswan T, Ismail A, Zubaydi A, Piscesa B, Sukma NPLS. A critical review on structural testing and assessment of lightweight sandwich structure for ship structure application, 2023, p. 030031. https://doi.org/10.1063/5.0116355.
- 80. Ang J, Goh C, Saldivar A, Li Y. Energy-Efficient Through- Life Smart Design, Manufacturing and Operation of Ships in an Industry 4.0 Environment. Energies 2017;10:610. https://doi.org/10.3390/en10050610.
- 81. Zhou J, Wang H. Study on efficient removal of SOx and NOx from marine exhaust gas by wet scrubbing method using urea peroxide solution. Chem Eng J 2020;390:124567. https://doi.org/10.1016/j.cej.2020.124567.
- 82. Kwak J-S, Jung DH, Ko G, Kwon JG, Kim SH, Jee J-H. Performance Assessment of an Exhaust Gas CO2 Absorption (EGCA) System Installed on a 1.075-MW HiMSEN 5H22CDF Engine. Fuel 2024;358:130082. https://doi.org/10.1016/j.fuel.2023.130082.
- 83. Zhou J, Zhou S, Zhu Y. Characterization of Particle and Gaseous Emissions from Marine Diesel Engines with Different Fuels and Impact of After-Treatment Technology. Energies 2017;10:1110. https://doi.org/10.3390/en10081110.
- 84. ABS. Abs Advisory on Exhaust Gas Scrubber Systems. Rep by ABS 2017:1–45. 85. Wang Z, Kuang H, Zhang J, Chu L, Ji Y. Nitrogen oxide removal by non-thermal plasma for marine diesel engines. RSC Adv 2019;9:5402–16. https://doi.org/10.1039/C8RA09217F.
- 86. Hoang AT, Foley AM, Nižetić S, Huang Z, Ong HC, Olcer AI. Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. J Clean Prod 2022;355:131772. https://doi.org/10.1016/j. jclepro.2022.131772.
- 87. Villalba G, Gemechu ED. Estimating GHG emissions of marine ports—the case of Barcelona. Energy Policy 2011;39:1363–8.
- 88. Zhu N, Hong Y, Cai Y, Dong F, Song J. The Removal of CH4 and NOx from Marine LNG Engine Exhaust by NTP Combined with Catalyst: A Review. Materials (Basel) 2023;16:4969. https://doi.org/10.3390/ma16144969.
- 89. Ben-Hakoun E, Van De Voorde E, Shiftan Y. Trends in ission Inventory of Marine Traffic for Port of Haifa. Sustainability 2022;14:908. https://doi.org/10.3390/su14020908.
- 90. Boren C, Grifoll M, Castells-Sanabra M. Emissions Assessment of Container Ships Sailing under Off-Design Conditions. J Mar Sci Eng 2023;11:1983. https://doi.org/10.3390/jmse11101983.
- 91. Atak U, Arslanoğlu Y. Machine learning methods for predicting marine port accidents: a case study in container terminal. Ships Offshore Struct 2022;17:2480–7. https://doi.org/10.1080/17445302.2021.2003067.
- 92. Cheliotis M, Lazakis I, Cheliotis A. Bayesian and machine learning-based fault detection and diagnostics for marine applications. Ships Offshore Struct 2022;17:2686–98. https://doi.org/10.1080/17445302.2021.2012015.
- 93. Yuksel O, Bayraktar M, Sokukcu M. Comparative study of machine learning techniques to predict fuel consumption of a marine diesel engine. Ocean Eng 2023;286:115505. https://doi.org/10.1016/j.oceaneng.2023.115505.
- 94. Kim Y-R, Jung M, Park J-B. Development of a Fuel Consumption Prediction Model Based on Machine Learning Using Ship In-Service Data. J Mar Sci Eng 2021;9:137. https://doi.org/10.3390/jmse9020137.
- 95. Nguyen VG, Rajamohan S, Rudzki K, Kozak J, Sharma P, Pham NDK. Using Artificial Neural Networks for Predicting Ship Fuel Consumption. Polish Marit Res 2023;30:39–60. https://doi.org/10.2478/pomr-2023-0020.
- 96. Gomez Ruiz MA, de Almeida IM, Perez Fernandez R. Application of Machine Learning Techniques to the Maritime Industry. J Mar Sci Eng 2023;11:1820. https://doi.org/10.3390/jmse11091820.
- 97. Nga PTH, Park Y Il, Park SH, Yeo GT. Who are the beneficiaries and stakeholders of blockchain commercialization in the shipping industry? J Navig Port Res 2020;44:79–87.
- 98. Hu Q, Han W, Zhang H. Ship identity authentication security model based on Blockchain. 2021 4th Int. Conf. Data Sci. Inf. Technol., New York, NY, USA: ACM; 2021, p. 135–42. https://doi.org/10.1145/3478905.3478933.
- 99. Pu S, Lam JSL. A game theoretic approach of optimal adoption time of blockchain: A case of ship operators. Comput Ind Eng 2022;169:108219. https://doi.org/10.1016/j.cie.2022.108219.
- 100. Qin Z, Ye J, Meng J, Lu B, Wang L. Privacy-Preserving Blockchain-Based Federated Learning for Marine Internet of Things. IEEE Trans Comput Soc Syst 2022;9:159–73. https://doi.org/10.1109/TCSS.2021.3100258.
- 101. Stephane I, Saputra H, Alhaj N, Putra LM. Utilization of Blockchain for Marine Products Tracking. Indones J Comput Sci 2022;11. https://doi.org/10.33022/ijcs.v11i2.3075.
- 102. Czermański E, Oniszczuk-Jastrząbek A, Spangenberg EF, Kozłowski Ł, Adamowicz M, Jankiewicz J. Implementation of the Energy Efficiency Existing Ship Index: An important but costly step towards ocean protection. Mar Policy 2022;145:105259. https://doi.org/10.1016/j.marpol.2022.105259.
- 103. Xu S, Liu Y. Research on the impact of carbon finance on the green transformation of China’s marine industry. J Clean Prod 2023;418:138143. https://doi.org/10.1016/j.jclepro.2023.138143.
- 104. Chuah LF, Mokhtar K, Mhd Ruslan SM, Bakar AA, Abdullah MA, Osman NH. Implementation of the energy efficiency existing ship index and carbon intensity indicator on domestic ship for marine environmental protection. Environ Res 2023;222:115348. https://doi.org/10.1016/j.envres.2023.115348.
- 105. Tzu F-M, Su D-T. Evaluation of carbon dioxide emission based on energy efficiency existing ship index during oceanographic navigation. J Oper Oceanogr 2024;17:151–64. https://doi.org/10.1080/1755876X.2023.2254133.
- 106. Ruiz Zardoya A, Oregui Bengoetxea I, Lopez Martinez A, Lorono Lucena I, Orosa JA. Methodological Design Optimization of a Marine LNG Internal Combustion Gas Engine to Burn Alternative Fuels. J Mar Sci Eng 2023;11:1194. https://doi.org/10.3390/jmse11061194.
- 107. Xing H, Stuart C, Spence S, Chen H. Alternative fuel options for low carbon maritime transportation: Pathways to 2050. J Clean Prod 2021;297:126651. https://doi.org/10.1016/j.jclepro.2021.126651.
- 108. Kohl M, Linser S, Prins K, Talarczyk A. The EU climate package “Fit for 55” - a double-edged sword for Europeans and their forests and timber industry. For Policy Econ 2021;132:102596. https://doi.org/10.1016/j.forpol.2021.102596.
- 109. Schlacke S, Wentzien H, Thierjung E-M, Koster M. Implementing the EU Climate Law via the ‘Fit for 55’ package. Oxford Open Energy 2022;1. https://doi.org/10.1093/ooenergy/oiab002.
- 110. Zheng Y, Yin W, Zhang W, Liang J, Liu K, Wang K. A Forecasting Method for Macro-Control Policy of Heating Energy Consumption and Carbon Emissions Based on Building Area and Energy Intensity: A Case Study of Northern China. Energies 2022;15:1153. https:// doi.org/10.3390/en15031153.
- 111. Zhu X, He H, Lu K, Peng Z, Gao HO. Characterizing carbon emissions from China V and China VI gasoline vehicles based on portable emission measurement systems. J Clean Prod 2022;378:134458. https://doi.org/10.1016/j.jclepro.2022.134458.
- 112. Ash N, Scarbrough T. Sailing on solar: Could green ammonia decarbonise international shipping. Environ Def Fund London, UK 2019.
- 113. Skold S. Green Port Dues—Indices and Incentive Schemes for Shipping. Green Ports, Elsevier; 2019, p. 173–92. https://doi.org/10.1016/B978-0-12-814054-3.00009-8.
- 114. Goh SH. The impact of foldable ocean containers on back haul shippers and carbon emissions. Transp Res Part D Transp Environ 2019;67:514–27. https://doi.org/10.1016/j. trd.2019.01.003.
- 115. Dirzka C, Acciaro M. Principal-agent problems in decarbonizing container shipping: A panel data analysis. Transp Res Part D Transp Environ 2021;98:102948. https://doi.org/10.1016/j.trd.2021.102948.
- 116. Harichandan S, Kar SK, Rai PK. A systematic and critical review of green hydrogen economy in India. Int J Hydrogen Energy 2023;48:31425–42. https://doi.org/10.1016/j.ijhydene.2023.04.316.
- 117. Ferraro G, Failler P. Governing plastic pollution in the oceans: Institutional challenges and areas for action. Environ Sci Policy 2020;112:453–60. https://doi.org/10.1016/j.envsci.2020.06.015.
- 118. Zhang H. Towards global green shipping: the development of international regulations on reduction of GHG emissions from ships. Int Environ Agreements Polit Law Econ 2016;16:561–77. https://doi.org/10.1007/s10784-014-9270-5.
- 119. Kukreja V. Hybrid fuzzy AHP–TOPSIS approach to prioritizing solutions for inverse reinforcement learning. Complex Intell Syst 2023;9:493–513. https://doi.org/10.1007/s40747-022-00807-5.
- 120. Norouzi A, Ghayur Namin H. A Hybrid Fuzzy TOPSIS – Best Worst Method for Risk Prioritization in Megaprojects. Civ Eng J 2019;5:1257–72. https://doi.org/10.28991/cej-2019-03091330.
- 121. Bhattacherjee A, Kukreja V, Aggarwal A. Stakeholders’ perspective towards employability: a hybrid fuzzy AHPTOPSIS Approach. Educ Inf Technol 2024;29:2157–81. https://doi.org/10.1007/s10639-023-11858-7.
- 122. Velmurugan K, Saravanasankar S, Venkumar P, Sudhakarapandian R, Bona G Di. Hybrid fuzzy AHPTOPSIS framework on human error factor analysis: Implications to developing optimal maintenance management system in the SMEs. Sustain Futur 2022;4:100087. https://doi.org/10.1016/j.sftr.2022.100087.
- 123. Cantillo J, Martin JC, Roman C. A hybrid-fuzzy TOPSIS method to analyze the consumption and buying behawior of fishery and aquaculture products (FAPs) in the EU28. Br Food J 2020;122:3403–17. https://doi.org/10.1108/BFJ-12-2019-0884.
- 124. Sequeira M, Adlemo A, Hilletofth P. A hybrid fuzzy-AHPTOPSIS model for evaluation of manufacturing relocation decisions. Oper Manag Res 2023;16:164–91. https://doi.org/10.1007/s12063-022-00284-6.
- 125. Alghassab M. Quantitative assessment of sustainable renewable energy through soft computing: Fuzzy AHPTOPSIS method. Energy Reports 2022;8:12139–52. https://doi.org/10.1016/j.egyr.2022.09.049.
- 126. Ekmekcioğlu O, Koc K, Ozger M. Stakeholder perceptions in flood risk assessment: A hybrid fuzzy AHP-TOPSIS approach for Istanbul, Turkey. Int J Disaster Risk Reduct 2021;60:102327. https://doi.org/10.1016/j.ijdrr.2021.102327.
- 127. Collan M, Fedrizzi M, Luukka P. New Closeness Coefficients for Fuzzy Similarity Based Fuzzy TOPSIS: An Approach Combining Fuzzy Entropy and Multidistance. Adv Fuzzy Syst 2015;2015:1–12. https://doi.org/10.1155/2015/251646.
- 128. Dwivedi G, Srivastava RK, Srivastava SK. A generalised fuzzy TOPSIS with improved closeness coefficient. Expert Syst Appl 2018;96:185–95. https://doi.org/10.1016/j.eswa.2017.11.051.
- 129. Hoang AT, Pandey A, Martinez De Oses FJ, Chen W-H, Said Z, Ng KH. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renew Sustain Energy Rev 2023;188:113790. https://doi.org/10.1016/j.rser.2023.113790.
- 130. Li J-C, Xu H, Zhou K, Li J-Q. A review on the research progress and application of compressed hydrogen in the marine hydrogen fuel cell power system. Heliyon 2024;10:e25304. https://doi.org/10.1016/j.heliyon.2024. e25304.
- 131. Alam SB, Ridwan T, Kumar D, Almutairi B, Goodwin C, Parks GT. Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part II: whole-core analysis. Nucl Eng Des 2019;346:176–91. https://doi.org/10.1016/j.nucengdes.2019.03.004.
- 132. Idrissi A El, Haidine A, Aqqal A, Dahbi A. Deployment Strategies of Mobile Networks for Internet-of-Things in Smart Maritime Ports. 2022 11th Int. Symp. Signal, Image, Video Commun., IEEE; 2022, p. 1–6. https://doi.org/10.1109/ISIVC54825.2022.9800728.
- 133. Vu VV, Le PT, Do TMT, Nguyen TTH, Tran NBM, Paramasivam P. An insight into the Application of AI in maritime and Logistics toward Sustainable Transportation. JOIV Int J Informatics Vis 2024;8:158. https://doi.org/10.62527/joiv.8.1.2641.
- 134. Agarwala Ni. Managing Marine Environmental Pollution using Artificial Intelligence. Marit Technol Res 2021;3:Manuscript. https://doi.org/10.33175/mtr.2021.248053.
- 135. Garcia Marquez FP, Papaelias M, Marini S. Artificial Intelligence in Marine Science and Engineering. J Mar Sci Eng 2022;10:711. https://doi.org/10.3390/jmse10060711.
- 136. Nguyen HP, Nguyen PQP, Nguyen DKP, Bui VD, Nguyen DT. Application of IoT Technologies in Seaport Management. JOIV Int J Informatics Vis 2023;7:228–40. https://doi.org/10.30630/joiv.7.1.1697.
- 137. Cheung K-F, Bell MGH. Improving connectivity of compromised digital networks via algebraic connectivity maximisation. Eur J Oper Res 2021;294:353–64. https://doi.org/10.1016/j.ejor.2021.01.015.
- 138. Xu A, Qian F, Ding H, Zhang X. Digitalization of Logistics for transition to a resource-efficient and circular economy. Resour Policy 2023;83:103616. https://doi.org/10.1016/j.resourpol.2023.103616.
- 139. Barykin SE, Sergeev SM, Vasilyevich Provotorov V, Lavskaya K, Shidlovskaya KA, Dedyukhina N. Sustainability Analysis of Energy Resources Transport Based on A Digital N-D Logistics Network. Eng Sci 2024. https://doi.org/10.30919/es1093.
- 140. Bui VD, Nguyen HP. A Comprehensive Review on Big Data-Based Potential Applications in Marine Shipping Management. Int J Adv Sci Eng Inf Technol 2021;11:1067–1077. https://doi.org/10.18517/ijaseit.11.3.15350.
- 141. Liu M, Liu R, Zhang E, Chu C. Eco-friendly container transshipment route scheduling problem with repacking operations. J Comb Optim 2022;43:1010–35. https://doi.org/10.1007/s10878-020-00619-8.
- 142. Sturla-Zerene G, Figueroa B E, Sturla M. Reducing GHG global emissions from copper refining and sea shipping of Chile’s mining exports: A world win-win policy. Resour Policy 2020;65:101565. https://doi.org/10.1016/j.resourpol.2019.101565.
- 143. Chen J, Kang S, Wu A, Chen L. Projected emissions and climate impacts of Arctic shipping along the Northern Sea Route. Environ Pollut 2024;341:122848. https://doi.org/10.1016/j.envpol.2023.122848.
- 144. Bernardini A, Lavagnini I, Dall’Armi C, Pivetta D, Taccani R, Cadenaro F. The REShiP Project: Renewable Energy for Ship Propulsion, 2022. https://doi.org/10.3233/PMST220081.
- 145. Gao S, Xin X, Li C, Liu Y, Chen K. Container ocean shipping network design considering carbon tax and choice inertia of cargo owners. Ocean Coast Manag 2022;216:105986. https://doi.org/10.1016/j.ocecoaman.2021.105986.
- 146. Acciaro M, Sys C. Innovation in the maritime sector: aligning strategy with outcomes. Marit Policy Manag 2020;47:1045–63. https://doi.org/10.1080/03088839.2020.1737335.
- 147. Venkatesh VG, Zhang A, Luthra S, Dubey R, Subramanian N, Mangla S. Barriers to coastal shipping development: An Indian perspective. Transp Res Part D Transp Environ 2017;52:362–78. https://doi.org/10.1016/j.trd.2017.03.016.
- 148. Eom J-O, Yoon J-H, Yeon J-H, Kim S-W. Port Digital Twin Development for Decarbonization: A Case Study Using the Pusan Newport International Terminal. J Mar Sci Eng 2023;11:1777. https://doi.org/10.3390/jmse11091777.
- 149. Marandino C, van Doorn E, McDonald N, Johnson M, Acma B, Breviere E. From Monodisciplinary via Multidisciplinary to an Interdisciplinary Approach Investigating Air-Sea Interactions – a SOLAS Initiative. Coast Manag 2020;48:238–56. https://doi.org/10.1080/08920753.2020.1773208.
- 150. Fernando H, Wickramasinghe V. Employability skills of maintenance technicians in container ports: Implications for maritime technical and vocational education and training. Marit Technol Res 2024;6:269909. https://doi.org/10.33175/mtr.2024.269909.
- 151. Galicia PR, Maravillas N, Samillano R, Huera CA, Pechuanco FL. 21st century learning skills of Maritime faculty in the Province of Antique, Philippines. Marit Technol Res 2024;6:270545. https://doi.org/10.33175/mtr.2024.270545.
- 152. Sartini S, Triyono S, Triastuti A. Unveiling Maritime English communication needs for seafarer: Strategic reformation for classroom instructional design. Marit Technol Res 2024;7:271921. https://doi.org/10.33175/mtr.2025.271921.
- 153. Pangalos G. Financing for a Sustainable Dry Bulk Shipping Industry: What Are the Potential Routes for Financial Innovation in Sustainability and Alternative Energy in the Dry Bulk Shipping Industry? J Risk Financ Manag 2023;16:101. https://doi.org/10.3390/jrfm16020101.
- 154. Tomos BAD, Stamford L, Welf le A, Larkin A. Decarbonising international shipping – A life cycle perspective on alternative fuel options. Energy Convers Manag 2024;299:117848. https://doi.org/10.1016/j.enconman.2023.117848.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faf28b33-ec4f-43a9-832e-4f69c4a964d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.