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Some remarks on a mathematical model of
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Abstract In this paper, a SEIR model proposed in the article “Dynamic analysis of
mathematical model with health care capacity for COVID-19 pandemic” by S. Çakan
(2020) is analysed. The model describes COVID-19 pandemic spread affected by
healthcare capacity and is expressed by a system of delay differential equations. To
prove the local stability of stationary states, S. Çakan uses linearization technique,
though she does this as if the equations did not depend on the delay. Additionally,
it is shown that the crucial argument used by S. Çakan to prove boundedness of the
solutions is not correct, which implies that the proofs of global stability in the original
article are not correct either. In this paper, improved proofs of local and global
stability of the stationary states are provided. For local stability of the stationary
states a standard linearization technique is used. Global stability of the stationary
states is proved based on Lyapunov’s functionals. Although the functionals are the
same as those proposed by S. Çakan, additional properties of the solutions (in the
case of disease–free stationary state) and the functional (in the case of the endemic
stationary state) are proved.
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1. Introduction First cases of coronavirus disease 2019 (COVID-19)
were identified in December 2019 in China. Since then, the disease has spread
worldwide, leading to an ongoing pandemic and becoming one of the biggest
current world’s problems. In order to predict dynamics of epidemic, compart-
mental epidemiological SIR and SEIR models were adapted and modified to
reflect some aspects of the disease (see [1], [5]).

Predictive mathematical models are crucial to describe the course of the
pandemic and plan effective control strategies. Therefore, researchers made
efforts to deliver such models as soon as possible. Unfortunately, the rush and
shortened publication process made it easier to overlook some fundamental
mistakes in the analysis. In this paper we are going to point out and correct
lapses in the article by S. Çakan’s [8] .
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1.1. Presentation of the model
The model proposed by S. Çakan is a modification of the standard SEIR

model. In the article [8] the author divides the whole population into four
separable compartments: Susceptible (S), Exposed (E), Infectious (I) and
Recovered (R). The last group – R – not only contains individuals that have
already recovered from the disease, but also all individuals that cannot infect
others (e.g. due to isolation). Let us denote by S,E, I,R the size of groups
S, E, I, R, respectively. In [8] three modifications of a standard SEIR model
were proposed. First – a direct transmission from Exposed to Recovered has
been added to describe individuals that have been infected but cannot infect
others (for various reasons, e.g. quarantine). The sketch of transmissions be-
tween compartments is presented on Fig. 1. Second – S. Çakan introduced
time delay into equations describing dynamics of E and I, substituting the
term “−γE(t)” which describes transition between Exposed and Infectious
compartments by the term “−γβS(t)I(t) e−dτ ”. She claimed that such mod-
ification describes the incubation period of COVID-19. Although we do not
agree with this justification, we believe that it becomes reasonable after con-
sidering a system without Exposed and Recovered compartments (which was
actually done in [8]). Moreover, this modification causes problems with non-
negativity of solutions, which we discuss later.

Figure 1: Compartmental transition diagram for the model from [8]

The last modification proposed by S. Çakan is the most important. Specif-
ically, in [8] it is assumed that recovery and disease-induced death rates de-
pend on the healthcare system capacity c ∈ [0, 1] which may change during
the epidemic. We assume that c = 1 means that the healthcare system is fully
efficient, while c = 0 represents the crisis of the healthcare system, when all
hospital opportunities are consumed away. Thus, recovery rate α and disease-
induced death rate µ depend on the condition of the healthcare system c and
we write α = α1 + α2c and µ = µ1 + µ2(1 − c). Now, α1 can be interpreted
as natural recovery rate (without medical help), and (α1 + α2) is the max-
imal recovery rate. Similarly, µ1 + µ2 is the natural disease-induced death
rate, while µ1 represents the minimal disease-induced death rate that can be
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achieved due to efficient healthcare. In this paper we limit ourselves to the
case of c being a constant. The model considered in [8] consists of four delay
differential equations

Ṡ(t) = b− βS(t)I(t)− dS(t),

Ė(t) = βS(t)I(t)− γβS(t− τ)I(t− τ) e−(d+δ)τ −(d+ δ)E(t),

İ(t) = −
(
α1 + α2c+ µ1 + µ2

(
1− c

)
+ d

)
I(t)+

+ γβS(t− τ)I(t− τ) e−(d+δ)τ ,

Ṙ(t) =
(
α1 + α2c

)
I(t) + δE(t)− dR(t).

(1)

The other parameters used in System (1) have standard interpretations,
namely:

• b – birth rate,

• d – natural death rate (1d can be interpreted as average lifetime),

• β – effective contact rate,

• γ – progression rate, i.e. fraction of infected individuals transitioning
from group E to I,

• τ – length of the incubation period, i.e. average time that an infected
individual spends in group E.

It is worth mentioning that we replaced the term “e−dτ ” from article [8]
with “e−(d+δ)τ ” in the second and third equations, as we believe that this
term should correspond to the change of the size of group E, not only due to
the mortality, but also to direct transition into R compartment. However, this
change is only quantitative and does not influence the qualitative properties
of the considered model.

To close System (1) we impose the following initial condition:

S(t) = ϕ1(t), E(t) = ϕ2(t), I(t) = ϕ3(t), R(t) = ϕ4(t), (2)

where ϕ1, ϕ2, ϕ3, ϕ4 are non-negative continuous functions defined on [−τ, 0).
Note that the variables R and E do not appear in equations for S and

I in System (1). Therefore, throughout the paper, except for Subsection 2.1,
we consider the model

Ṡ(t) = b− βS(t)I(t)− dS(t),

İ(t) = γβS(t− τ)I(t− τ) e−(d+δ)τ −
(
η + σc

)
I(t)

(3)

where
η := µ1 + µ2 + α1 + d, σ := α2 − µ2, (4)



26 A mathematical model of COVID-19 with health care capacity

and c ∈ [0, 1] is a constant. In the next section (see 2.1), we show that for
a non-negative initial condition, the coordinate E may change the sign. It
implies that there does not exist a bounded set invariant with respect to
evolution governed by System (3), in contrary to the statement in [8]. In con-
sequence, we need to prove some additional properties of Lyapunov’s function
in order to conclude global stability of the steady states of System (3).

To close System (3) we assume that

S(t) = ϕ1(t), I(t) = ϕ2(t), (5)

where ϕ1, ϕ2 are non-negative functions continuous on [−τ, 0).
The paper is organised as follows. In the next section we prove basic prop-

erties of the model. We discuss nonnegativity, boundedness and continuation
of solutions, as well as define an invariant region for System (3). Then, in Sec-
tion 3 we derive formulas for stationary states of System (3) and we examine
local and global stability of these states.

2. Basic properties of the model
In this section, we prove existence and uniqueness of solutions to Sys-

tems (1) and (3) for fixed initial conditions. Moreover, we discuss nonneg-
ativity of solutions to these systems. Then we prove that the solution to
System (3) is well defined for all t ≥ 0 for a non-negative initial condition.

Theorem 2.1 For any non-negative initial function (2) that is continuous
on [−τ, 0) there exists a unique solution to System (1). For any non-negative
initial function (5) that is continuous on [−τ, 0) there exists a unique solution
to System (3).

Proof The right-hand side of (1), as well as the right-hand side of (3), is
continuous and satisfies the Lipschitz’s condition on each compact subset of
the space of continuous functions. Thus, the assertion of Theorem follows
from the standard theory of delay differential equations, see e.g. [4]. ■

2.1. Nonnegativity of solutions
In the article [8], S. Çakan claims that the solution to System (1) remains

non-negative if the initial condition is non-negative. However, the author does
not prove this statement, which in fact appears to be false. Let us consider
the following example.

Przykład 2.1 Let us take the initial condition (2) for System (1) such that
ϕ1(0) = ϕ2(0) = ϕ3(0) = 0, ϕ1(−τ) = ϕ3(−τ) = 1, ϕ1, ϕ2, ϕ3 are non-negative
and continuous and ϕ4 is an arbitrary, non-negative, continuous function.
Then

E(0) = ϕ2(0) = 0 and

Ė(0) = −γβϕ1(−τ)ϕ3(−τ) e−(d+δ)τ = −γβ e−(d+δ)τ < 0,
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so there exists ξ > 0 such that E(t) < 0 for t ∈ (0, ξ).

One can argue that initial condition assumed in Example 2.1 is artificial and
cannot describe a realistic epidemiological situation. Nonetheless, the solution
E to System (1) can be negative also for epidemiologically relevant initial
conditions. In this case, we only present an example of a numerical solution,
as it is not easy to prove analytically the negativity of E.

Przykład 2.2 Let us consider the epidemic that starts at time t = 0. We
assume that ϕ2(t) = ϕ4(t) = 0 for all t ∈ [−τ, 0] and that the whole population
is susceptible for t < 0, that is ϕ1(t) = b

d and ϕ3(t) = 0 for t < 0. Finally,
we assume that at time t = 0 a small population of individuals becomes
infectious, which means ϕ1(0) =

b
d − ε and ϕ3(0) = ε for a certain ε > 0. For

the following set of parameters:

β = 1.75 · 10−8, b = 4000, γ = 1.2, α1 = 0.4,

α2 = 0.4, d = 0.000015, δ = 0.005, µ1 = 0.05,

µ2 = 0.05, c = 0.4, τ = 10, ε = 1

the function E is negative for t ∈ [150, 500], see Fig. 2.
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Figure 2: The graph of the coordinate E(t) of the solution to System (1) for
parameters and initial condition given in Example 2.2.

In the following, we restrict our analysis to System (3). First, we show
that the solution to System (3) with a non-negative initial condition is non-
negative. However, we cannot prove that S(t) + I(t) is bounded from above.

Let us define C as a space of all continuous functions defined on the interval
[−τ, 0] with values in IR2.

Theorem 2.2 For any non-negative initial condition (2), the solution to Sys-
tem (3) is non-negative.
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Proof We write the right-hand side of (3) in a functional form, that is we
define a function f = [f1, f2]

T : C → IR2 by a formula

f1(ϕ) = b− βϕ1(0)ϕ2(0)− dϕ1(0)

f2(ϕ) = γβϕ1(−τ)ϕ2(−τ) e−(d+δ)τ −
(
η + σc

)
ϕ2(0).

Now, we will examine if the right-hand side of (3) fulfills the assumptions
of Theorem 3.4 from [6]. Firstly, we need to know that there exists a unique
solution to System (3), which we proved in Theorem 2.1. Second, we need
to check if for any t ∈ [0,+∞) and for any ϕ such that ϕ ≥ 0 the following
implication holds:

ϕi(0) = 0 for some i ∈ {1, 2} =⇒ fi(t, ϕ) ≥ 0.

This is an easy observation. By way of explanation, if ϕ1(0) = 0, then f1(ϕ) =
b > 0. Whereas if ϕ2(0) = 0, then

f2(ϕ) = γβϕ1(−τ)ϕ2(−τ) e−(d+δ)τ ≥ 0.

Thus, assertion of Theorem follows from [6, Th 3.4]. ■

2.2. Boundedness of solutions
Solutions of classical SEIR model (without delays) satisfy the condition:

if S(0) + I(0) + E(0) + R(0) ≤ b/d, then S(t) + I(t) + E(t) + R(t) ≤ b/d
for all t ≥ 0. In the case considered here, this implication holds as well, but
due to the failure of nonnegativity property for E, we cannot infer that each
variable is bounded by b/d. This is a genuine issue for proving continuation of
solutions as well as for using Lyapunov’s theorems to prove global stability of
steady states. In order to solve this problem, we provide the following lemmas
and their proofs.

The first lemma states that the function I is either constant, equal to 0
on the interval [0, τ ] (and consequently for all t ≥ 0), or there exists such
t̄ ∈ [0, τ ] that I(t) is positive for all t > t̄.

Lemma 2.1 The solution to System (3) with a non-negative initial condi-
tion (5) has the following properties.

1. If I(0) = 0 and S · I ≡ 0 on [−τ, 0], then I ≡ 0 for all t ≥ 0.

2. If I(0) = 0 and S · I ̸≡ 0 on [−τ, 0], then I ≡ 0 on [0, τ − κ] and I > 0
for t > τ − κ, where κ = − inf{t ∈ [−τ, 0] : S(t) · I(t) > 0}.

3. If I(0) > 0, then I > 0 for all t ≥ 0.
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Proof Note that it is enough to prove the assertions of Lemma for t ∈ [0, τ ].
Then the mathematical induction allows us to extend the result for all t ≥ 0.

Note that for t ∈ [0, τ ] inequality

h(t)− η̄I(t) ≤ İ(t) ≤ h(t)− η̂I(t) (6)

holds, where h(t) = γβS(t− τ)I(t− τ) e−(d+δ)τ , η̄ = η + |σ| and η̂ = η − |σ|.
If t ∈ [0, τ ], then t− τ ∈ [−τ, 0], so values of h(t) for t ∈ [0, τ ] are defined due
to the initial condition. Therefore, Gronwall’s inequality implies that(

I(0) +

∫ t

0
h(s) e−η̄s ds

)
e−η̄t ≤ I(t) ≤

(
I(0) +

∫ t

0
h(s) e−η̂s ds

)
e−η̂t. (7)

Additionally, since the initial condition is non-negative, so is the function h
on [0, τ ].

First, assume that I(0) = 0 and S · I ≡ 0 on [−τ, 0]. Then h ≡ 0 on [0, τ ]
and, due to (7), I ≡ 0 on [0, τ ]. This proves the first point of the lemma.

Second, assume that I(0) = 0 and S ·I ̸≡ 0 on [−τ, 0]. From the definition
of κ it is clear that h ≡ 0 on [0, τ −κ]. Thus, Inequality (7) implies that I ≡ 0
on [0, τ −κ]. Moreover, S(t) · I(t) > 0 for t ∈ (−κ,−κ+ε) for a certain ε > 0,
based on continuity of I. Consequently, h(t) > 0 for t ∈ (τ − κ, τ − κ + ε).
Based on the same Inequality (7), we claim the positivity of I(t) for t > τ−κ.
That completes the proof of the second point of the lemma.

The third point of the lemma follows from (7) and from nonnegativity of
the function h. ■

Now, we use Lemma 2.1 to prove that the function S has an upper bound.

Lemma 2.2 For a non-negative initial condition (5) the solution to System (3)
fulfills

S(t) ≤ b

d
for t ∈ [−τ, 0] =⇒ S(t) ≤ b

d
for t ≥ 0.

Proof Note that, according to Lemma 2.1, I(t) ≥ 0 holds for all t ∈ [−τ,∞).
Proof by the method of steps. We prove that S(t) ≤ b

d for t ∈ [0, τ ]. Then,
by mathematical induction, we deduce that S(t) ≤ b

d for t ∈ [0,∞).
Suppose that the assertion of Lemma does not hold, i.e there exists t̃ ∈

(0, τ ], such that S(t̃) > b
d . The continuity of the function S implies existence of

t1 ∈ [0, t̃), satisfying the following conditions: S(t1) = b
d ; Ṡ(t1) ≥ 0; S(t) ≤ b

d

for t ∈ [0, t1]. Additionally, there exists ε > 0 such that Ṡ(t) > 0 and S(t) > b
d

for t ∈ (t1, t1 + ε).
Observe that

Ṡ(t1) = b− β
b

d
I(t1)− d

b

d
= −β

b

d
I(t1) ≤ 0. (8)
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Thus, if I(t1) > 0, then Ṡ(t1) < 0, but this contradicts the assumption
Ṡ(t1) ≥ 0.

If I(t1) = 0 then, based on Lemma 2.1, the condition t ∈ [0, t1) implies
I(t) = 0. Hence, Ṡ(t) = b − dS(t) holds for t ∈ [0, t1). Consequently, S ≡
S(t1) ≡ b

d on [0, t1) (due to uniqueness of solutions of (3)).
Lemma 2.1 states that for t > t1 there are two possibilities: either I > 0

on (t1, τ ] or I ≡ 0 on (t1, t1 + ε1), for a certain ε1 > 0.
In the first case, the inequality Ṡ(t) < 0 holds for t ∈ (t1, t1 + ε) for a

certain ε > 0 (due to Inequality (8) and differential continuity of S). But it
contradicts the assumption that Ṡ(t) > 0 for t ∈ (t1, t1 + ε). The second case
implies that S ≡ b

d for t ∈ (t1, t1+ε1), which contradicts the assumption that
S(t) > b

d for t ∈ (t1, t1 + ε).
Thus, inequality S(t) ≤ b

d holds for t ∈ [0, τ ]. By induction we conclude
that S(t) ≤ b

d for all t ≥ 0. ■

Finally, we show that if the model parameters satisfy a certain inequality,
then I(t) is bounded.

Lemma 2.3 If the inequality

γβb e−(d+δ)τ

d(η + σc)
< 1 (9)

holds, then for any solution to System (3) with a non-negative initial condi-
tion (5) we have

I(t) ≤ sup
s∈[−τ,0]

I(s) for all t ≥ 0.

Proof Note that (according to Lemma 2.1) if sup
s∈[−τ,0]

I(s) = 0, then I(t) = 0

for all t ≥ −τ . For this reason, the assertion of Lemma holds in this case.
Now, assume that sup

s∈[−τ,0]
I(s) > 0 and the assertion of Lemma does not

hold. Then, I(t) > sup
s∈[−τ,0]

I(s) > 0 for a certain t > 0. Observe that the set

A :=

{
t ∈ [0,∞) : I(t) = sup

s∈[−τ,0]
I(s) > 0, İ(t) ≥ 0

}
.

is nonempty.
Next, let us define t̃ := inf A. Then I(t) ≤ I(t̃) for t ∈ [−τ, t̃] and I(t̃) > 0.

For γβb e−(d+δ)τ

d(η+σ) < 1 the following inequalities are true.

İ(t̃) ≤ bβγ e−(d+δ)τ

d
I(t̃− τ)− (η + σc)I(t̃) ≤

≤ (η + σc0)I(t̃)

(
bβγ e−(d+δ)τ

d(η + σc)
− 1

)
< 0.

(10)
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The first inequality of (10) is a direct consequence of Lemma 2.2, the second
follows from the definition of t̃. Hence, if γβb e−(d+δ)τ

d(η+σ) < 1, then İ(t̃) < 0, which
contradicts İ(t̃) ≥ 0. ■

2.3. Continuation of solutions and the invariant set
In this section, we prove that, for a non-negative initial condition, the

solution to System (3) is well defined for all t ≥ 0.

Proposition 2.1 The solution to System (3) with a non-negative initial
condition (5) exists for all t ∈ [−τ,∞).

Proof The right-hand side of (3) is well defined on IR+ and the solution
to System (3) is non-negative, so the solution is bounded on every compact
interval. According to Lemma 2.2, the function S is bounded.

Now, we prove that I is bounded on [0, τ ]. For t ∈ [0, τ ] we have

İ(t) = h(t)−
(
η + cσ

)
I(t), (11)

where

h(t) = γβϕ1(t− τ)ϕ2(t− τ) e−(d+δ)τ .

The function h is given on [0, τ ] by the initial condition. Equation (11) is a
non-autonomous linear ordinary differential equation, so its solution on [0, τ ],
namely the function I, is bounded. By mathematical induction, we deduce
that I is bounded on any compact interval of [0,+∞). This completes the
proof. ■

Note that, due to Lemma 2.2, we can define an invariant region for System
(3).

Definition 2.1 The set Γ given by the formula

Γ =

{(
x, y

)
∈ [0,+∞)2 : x ≤ b

d

}
(12)

is the invariant region for System (3).

3. Stability of stationary states
In [8], in order to derive the formula for the basic reproduction number

R0, the next-generation matrix method [3, 7] has been applied. The method is
commonly used to calculate the basic reproduction number. However, the next
generation matrix method was introduced and proved for systems without
delay and we are not aware of any strict generalisation of this method to
systems with time delay. Therefore, we provide the formula for R0 before
justifying that it is a proper expression of the basic reproduction number for
System (3).



32 A mathematical model of COVID-19 with health care capacity

Definition 3.1 Let

R0 =
γβb e−(d+δ)τ

d(η + σc)
. (13)

Assume that S(t) ≈ b/d and I(t) ≈ 0, I and S are constant and I(t) > 0 for
t ≤ 0. Then, I increases if and only if İ(0) > 0, which is equivalent (under
these assumptions) to the inequality R0 < 1. This heuristically justifies the
formula for R0. Afterwards, we prove that if R0 < 1, then the disease-free
stationary state is globally asymptotically stable.

Coordinates of any stationary state P̄ = (S̄, Ī) of System (3) satisfy the
following algebraic relations

0 = b− βS̄Ī − dS̄,

0 =
(
γβS̄ e−(d+δ)τ −(η + σc)

)
Ī .

(14)

Solving (14) and using (13), we obtain formulas for stationary states.

Proposition 3.1 If the inequality R0 > 1 holds, then System (3) has two
stationary states P0 (disease-free) and P∗ (endemic):

P0 =
(
S0, I0

)
=

(
b

d
, 0

)
,

P∗ = (S∗, I∗) =

(
b

dR0
,
d

β

(
R0 − 1

))
.

Otherwise, System (3) has only disease-free stationary state P0.

3.1. Local stability
To begin with, we prove that the disease-free stationary state is locally

asymptotically stable for R0 < 1, whereas the endemic stationary state is
locally asymptotically stable for R0 > 1. Next, we construct Lyapunov’s
functionals and we prove that for any non-negative initial condition (5), the
solution to (3) converges to one of the steady states (disease-free or endemic
depending on R0).

Let us start the analysis of local stability by expressing the characteristic
function W for System (3) and for a stationary state P̄ = (S̄, Ī) of (3). The
formula for W is as follows

W (λ) = det

[ −βĪ − d− λ −βS̄

γβĪ e−(d+δ)τ e−λτ γβS̄ e−(d+δ)τ e−λτ −(η + σc)− λ

]
, (15)

which is equivalent to

W (λ) = (−βĪ − d− λ)
(
γβS̄ e−(d+δ)τ e−λτ −(η + σc)− λ

)
+

+ γβ2S̄Ī e−(d+δ)τ e−λτ .
(16)
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We would like to point out that we have obtained the same conditions for local
stability as those presented in [8]. Nonetheless, in [8] the formulas for station-
ary states have been obtained in a nonrigorous manner, as the dependence of
characteristic functions (polynomials in [8]) on time delay was overlooked.

3.1.1. Local stability of disease–free stationary state

Proposition 3.2 The disease-free stationary state P0 is locally asymptoti-
cally stable, if R0 < 1. Otherwise, if R0 > 1 it is unstable.

Proof For stationary state P0, we obtain

W (λ) = (−λ− d)U(λ),

where
U(λ) := (η + σc)R0 e

−λτ −(η + σc)− λ. (17)

Because every root of W is either a root of U or it is equal to −d < 0, it is
enough to prove that all roots of U have negative real parts. Note that λ is a
root of U if and only if it is a solution to

λ = A+B e−λτ , (18)

where

A :=− (η + σc), B := (η + σc)R0. (19)

Let us make an easy observation that A < 0 and B = |A|R0 > 0. Therefore, if
R0 < 1, then A+B < 0 (and A < B obviously). In this case it is known that
all solutions to (18) have negative real parts (see e.g. Th 4.7, [6]). Similarly,
if R0 > 1, then A + B < 0 and consequently, there exits a solution to (18)
with a positive real part. ■

3.1.2. Local stability of endemic stationary state Let us begin by
expressing the formula of the characteristic function W for the stationary
state P∗ as

W (λ) = p(λ) + q(λ) e−λτ , (20)

where

p(λ) = λ2 + λ
(
dR0 + (η + σc)

)
+ d(η + σc)R0,

q(λ) = −λ(η + σc)− d(η + σc).
(21)

It is important not to ignore the dependence of R0 on the delay τ and therefore
the dependence of the function p on τ . Below, we present a theorem that allows
us to prove local stability of the endemic stationary state.
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Theorem 3.1 (cf. [2, 6]) Let W be in the form of (20), where p, q : C → C
are analytic functions and λ > 0. Let us suppose that the following conditions
hold:

(a) p(λ) ̸= 0 for all z ∈ C such that Re(λ) ≥ 0,

(b) |q(iy)| < |p(iy)| for all 0 ≤ y < ∞,

(c) lim
λ→∞,Re(λ)≥0

∣∣∣∣q(λ)p(λ)

∣∣∣∣ = 0.

Then for every root λ of the function W the inequality Re(λ) < 0 for τ ≥ 0
is true.

The proof of Theorem 3.1 is based on a contour integration for fixed param-
eters (and fixed τ), see [2]. Thus, the dependence of p on τ does not change
the assertion of Theorem 3.1 and we can use it in the case considered in this
paper.

Proposition 3.3 If R0 > 1, then the endemic stationary state P∗ is locally
asymptotically stable.

Proof We prove that the assumptions of Theorem 3.1 hold.
Note that p is a quadratic polynomial of λ and it can be rewritten as

p(λ) =
(
λ+ dR0

)(
λ+ (η + σc)

)
,

then it is easy to note that p has real, negative roots. For this reason the
condition (a) of Theorem 3.1 holds.

Now, let us check the condition (b) of Theorem 3.1. For an arbitrary
y ∈ [0,+∞), we have

|q(iy)|2 = (η + σc)2(y2 + d2),

|p(iy)|2 = (−y2 + d(η + σc)R0)
2 + y2(dR0 + (η + σc))2.

Therefore, inequality |q(iy)| < |p(iy)| is equivalent to

d2(η + σc)2 < y4 + y2(dR0)
2 + (dR0(η + σc))2. (22)

Inequality (22) is true for all y ∈ [0,∞) if and only if

d2(η + σc)2 < (dR0(η + σc))2 ⇐⇒ R0 > 1.

Therefore, the condition (b) holds if and only if R0 > 1.
Finally, the condition (c) of Theorem 3.1 holds as the polynomial p has a

higher degree than the polynomial q. To conclude, for R0 > 1 the assertion
of Proposition 3.3 follows from Theorem 3.1. ■



A. Kowalewska, J. Krawczyk, M. Bodnar 35

3.2. Global stability
Finally, we examine global stability of stationary states P0 and P∗ using

Lyapunov’s functions. System (3) generates dynamical system in C. Knowing
that S(t) ≤ b/d, we prove global stability in the set χ ⊂ C which is invariant
with respect to the evolution of System (3). Let us define

χ =

{
ϕ ∈ C : ϕ(t) ∈ Γ ∀t ∈ [−τ, 0]

}
⊂ C, (23)

where Γ is defined by (12).
The results provided here are the same as stated in [8]. However, the

proofs from [8] needed some improvement. In contrary to S. Çakan we claim
that invariant set χ is not bounded. Even though we make use of Lyapunov’s
functionals proposed in [8], in order to do so, we need to make sure that the
solutions to System of (3) have some additional properties, that have not
been considered in [8].

Theorem 3.2 The disease-free stationary state P0 is globally asymptotically
stable in χ if R0 < 1.

Proof Let us define L : C → IR by

L(ϕ) = ϕ2(0) + γβ e−(d+δ)τ

∫ 0

−τ
ϕ1(a)ϕ2(a)da, where ϕ = [ϕ1, ϕ2]

T . (24)

Below, we show that L is a Lyapunov’s functional on the set χ and satisfies
the assumptions of Theorem 3.1 [4, Chapter 5]. However, we cannot use this
theorem without proving that the solution to System (3) remains in χ (which
is already done) and is bounded (we need to prove it).

Let us denote the solution to System (3) by x = [S, I]T . Then (24) can be
expressed as

L(xt) = I(t) + γβ e−(d+δ)τ

∫ t

t−τ
S(a)I(a)da.

It seems obvious that L is continuous on χ. In order to examine if L is actually
a Lyapunov’s functional, we calculate the derivative of L along the trajectory
of xt:

L̇(xt) =
d

dt

(
L(xt)

)
= I(t)

(
γβ e−(d+δ)τ S(t)− (η + σc)

)
. (25)

Note that xt = [St, It]
T ∈ χ, so S(t) ≤ b

d . It implies that

L̇(xt) ≤ I(t)
(γβb

d
e−(d+δ)τ −(η + σc)

)
= I(t)(η + σc)(R0 − 1). (26)

We obtained the last equality using Formula (13) for R0. Finally, for R0 < 1,
the inequality L̇(xt) < 0 holds. Thus, L is a Lyapunov’s functional.
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Next, we find the explicit formula for the set Σ :=
{
ϕ ∈ χ : L̇(ϕ) = 0

}
.

We have L̇(ϕ) = 0 if and only if

ϕ2(0) = 0 ∨ ϕ1(0) =
d

bR0
. (27)

However, for ϕ ∈ χ we have ϕ1(0) ≤
b

d
<

d

bR0
as R0 < 1. Thus, the second

alternative of (27) does not hold. Therefore, ϕ2(0) = 0 which in turn implies
that

Σ =

{
ϕ = (ϕ1, ϕ2)

T ∈ χ : ϕ2(0) = 0

}
.

Note that the only subset of Σ, invariant to System (3) is

G :=

{
ϕ = (ϕ1, ϕ2)

T ∈ C : ϕ1 ≡
b

d
, ϕ2 ≡ 0

}
⊂ Σ.

Indeed, if ϕ2(0) = 0 then, by Lemma 2.1, ϕ2 ≡ 0 holds on [−τ, 0]. The
uniqueness of solutions to System (3) implies that ϕ1 ≡ b

d on [−τ, 0].
In order to complete the proof we show that the solution to System (3)

with the initial condition ϕ ∈ χ is bounded in Γ. From the definition of Γ we
have S(t) ∈

[
0, b

d

]
. The boundedness of I(t) for R0 < 1 follows from Lemma

2.3. ■

Note, that stability of the disease-free stationary state in the case R0 = 1
is not decided. Although we suspect that the the disease-free stationary state
is stable in this case, we cannot prove that. In the case of local stability, the
linearization theorem does not work in the case R0 = 1. In the case of global
stability, for any solution such that S(t) ≡ 0, I(t) ≥ 0 we have L̇(xt) = 0 and
thus chosen Lyapunov functional does not allow us to deduce that disease-free
stationary state is attractive.

Theorem 3.3 The endemic stationary state P∗ is globally asymptotically
stable in the set

χ∗ := χ \
{
ϕ = (ϕ1, ϕ2)

T ∈ C : ϕ2(t) = 0 for t ∈ [−τ, 0]
}

(28)

if R0 > 1.

Proof First, we construct a Lyapunov’s functional. We use the same func-
tional as in [8]. Moreover, the proof that the derivative of L along trajectories
of System (3) is negative is exactly the same as in [8]. Nevertheless, we need
to prove the boundedness of the solution of System (3) in order to use Theo-
rem 3.2 from [4, Chapter 5]. Let us define a function φ : (0,∞) → IR as

φ(y) = y − 1− ln(y). (29)
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The function φ is smooth,

dφ

dy
(y) = 1− 1

y
, (30)

φ(1) = 0 and φ(y) > 0 for y ̸= 1.
Let us construct L : C → IR. For any ϕ ∈ C we define

L(ϕ) = L1(ϕ) + L2(ϕ) + L3(ϕ), where

L1(ϕ) = S∗φ

(
ϕ1(−τ)

S∗

)
,

L2(ϕ) =
e(d+δ)τ

γ
I∗φ

(
ϕ2(0)

I∗

)
,

L3(ϕ) = βS∗I∗

∫ t

t−τ
φ

(
ϕ2(s)

I∗
ds

)
.

(31)

Similarly to the proof of Theorem (3.2), let x = [S, I]T be the solution of (3).
Aiming to verify if L is a Lyapunov’s functional, we calculate L̇(xt). Because
calculation is analogous to this in [8], here we present only the final result.
A series of algebraic transformations and the use of formula for the endemic
stationary state lead us to the following equality:

L̇(xt) = dS∗

(
2− S(t− τ)

S∗
− S∗

S(t− τ)

)
+

+ βS∗I∗

(
1− S∗

S(t− τ)
+ ln

S∗
S(t− τ)

)
+

+ βS∗I∗

(
1− S(t− τ)I(t− τ)

I(t)S∗
+ ln

S(t− τ)I(t− τ)

I(t)S∗

)
.

(32)

Due to properties of the logarithm and the fact that the function y + 1
y has

its minimum equal to 2 at y = 1, each factor in separate parenthesis in (32)
is non-positive. Thus, L̇(xt) ≤ 0 and we conclude that L is a Lyapunov’s
functional.

Now, we need to find two subsets: Σ = {ϕ ∈ C : L̇(ϕ) = 0} ⊂ χ∗ and
G ⊂ Σ – the largest subset of Σ invariant with respect to System (3). Let
Σ =

{
ϕ ∈ χ∗ : L̇(ϕ) = 0

}
. The following set of equations is equivalent to

L̇(ϕ) = 0 and follows from the properties of logarithm:

2− ϕ1(−τ)

S∗
− S∗

ϕ1(−τ)
= 0,

1− S∗
ϕ1(−τ)

+ ln
S∗

ϕ1(−τ)
= 0,

1− ϕ1(−τ)ϕ2(−τ)

ϕ2(0)S∗
+ ln

ϕ1(−τ)ϕ2(−τ)

ϕ2(0)S∗
= 0.

(33)
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The first and the second equation of (33) hold if and only if

ϕ1(−τ) = S∗, (34)

whereas the third equation of (33) holds if and only if

ϕ1(−τ)ϕ2(−τ) = ϕ2(0)S∗. (35)

Because of (34), Equation (35) reduces to ϕ2(−τ) = ϕ2(0), and the set Σ can
be expressed as

Σ =

{
ϕ = (ϕ1, ϕ2)

T ∈ χ∗ : ϕ1(−τ) = S∗, ϕ2(−τ) = ϕ2(0)

}
. (36)

Next, we compute the set G — the subset of Σ invariant with respect
to System (3). The following implications result directly from the definition
of G:

ϕ = [ϕ1, ϕ2]
T ∈ G =⇒ ϕ1 ≡ S∗, (37)

ϕ = [ϕ1, ϕ2]
T ∈ G =⇒ ϕ2 ≡ I∗. (38)

Indeed, if the initial condition ϕ ∈ G, then the solution x = (S, I)T to Sys-
tem (3) remains in G for t ≥ 0, that is xt ∈ G. This, based on Equation (34),
means that for all t > 0 we have S(t − τ) = S∗ which implies S(t) ≡ S∗.
The constraint ϕ(−τ) = ϕ(0) for Σ in (36) implies that for all t ≥ 0 we have
I(t− τ) = I(t). Moreover, since S(t) ≡ S∗, we have

0 = Ṡ = b− βS∗I(t− τ)− dS∗ =⇒ I(t− τ) =
b− dS∗
βS∗

= I∗

for all t ≥ 0. In consequence I(t) ≡ I∗, and

G =

{
ϕ = [ϕ1, ϕ2]

T ∈ χ∗ : ϕ1 ≡ S∗, ϕ2 ≡ I∗

}
.

As we do not know if x is bounded, to complete the proof we need to
examine V (xt) along the trajectories of (3) in χ∗. Below, we show that for
any ℓ > 0 there exits a constant K = K(ℓ) such that |ϕ(0)| < K(ℓ) for ϕ ∈ χ∗
and L(ϕ) < ℓ. This statement is actually more complicated than it seems to
be. Note that L1 depends only on ϕ1(−τ), L2 depends only on ϕ2(0) and L3

depends only on the integral of ϕ2, so there is no direct dependence on |ϕ(0)|.
Let us assume that L(ϕ) < ℓ. Nonnegativity of L1, L2, L3 implies that

L1, L2, L3 < ℓ. From the inequality L2 < ℓ we obtain

L2(ϕ) =
e(d+δ)τ

γ
I∗φ

(
ϕ2(0)

I∗

)
< ℓ =⇒ φ

(
ϕ2(0)

I∗

)
<

γℓ

e(d+δ)τ I∗
. (39)



A. Kowalewska, J. Krawczyk, M. Bodnar 39

By the definition of χ∗, we have |ϕ1(0)| ≤ b
d . Now, let us focus on proving the

boundedness of |ϕ2(0)|. Note that φ has the following property

φ(y) = y − 1− ln(y) >
y

2
for y ≥ 6. (40)

Let us consider two cases: ϕ2(0) < 6 · I∗ or ϕ2(0) ≥ 6 · I∗. In the first case,
ϕ2(0) is bounded. In the second case, Inequality (40) implies

ϕ2(0)

2I∗
< φ

(
ϕ2(0)

I∗

)
<

γℓ

e(d+δ)τ I∗
=⇒ ϕ2(0) <

γℓ

2 e(d+δ)τ
. (41)

Hence, |ϕ2(0)| is bounded in both cases. It implies the existence of the constant
K(ℓ) such that |ϕ(0)| < K(ℓ).

Thus, the assertion of the theorem follows from Theorem 3.2 from [4,
Chapter 5]. ■

4. Discussion. The main goal of this paper was to improve and correct
lapses in the analysis of the SEIR model of COVID-19 spread introduced in
[8] by S. Çakan.

First of all, solutions to System (1) may have negative values for the
non-negative initial condition, which was presented in Examples 2.1 and 2.2.
In consequence, solutions to System (3), considered throughout [8], are not
necessarily bounded. Therefore, the bounded invariant set for System (3)
does not necessarily exist. Thus, to prove global stability of stationary states,
we used the same Lyapunov’s functionals as in [8], but we made sure that
following conditions were met. In the case of the disease–free stationary state
we proved that solutions are bounded, while for the endemic stationary state
we proved boundedness of Liapunouv’s functional along trajectories.

Moreover, in [8] local stability of stationary states was analysed without
taking into account the time delay. We corrected this issue.

Additionally, the function c describing healthcare capacity introduced in
[8] depends on time. However, the author analysed the system as if c was a
constant, while for the purpose of numerical simulation it was assumed that
the function c depends on the size of the group I.

In this paper we considered the case of c being a constant parameter
and corrected the analysis of the system based on theory of delay differential
equations. The interesting case when c depends on the number of infectious
individuals will be considered elsewhere.

Acknowledgments: MB would like to thank the National Science Centre (Poland) for
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Kilka uwag o modelu pandemii COVID-19 z uwzględnieniem
wydolności służby zdrowia

A. Kowalewska, J. Krawczyk i M. Bodnar

Streszczenie W artykule rozważono model epidemiologiczny typu SEIR opisujący
dynamikę rozprzestrzeniania się pandemii COVID-19 z uwzględnieniem wydolności
służby zdrowia, zaproponowany przez S. Çakan w “Dynamic analysis of mathematical
model with health care capacity for COVID-19 pandemic” (2020). Model jest opisany
za pomocą układu równań różniczkowych z opóźnieniem. Nieznacznie zmodyfikowa-
liśmy układ zaproponowany przez S. Çakan i przeprowadziliśmy jego pogłębioną
analizę. Dowody lokalnej stabilności przedstawione w oryginalnym artykule były
oparte na linearyzacji, jednak pomijały zależność układu równań od opóźnienia. Do-
datkowo wykazaliśmy, że kluczowy argument używany przez S. Çakan w dowodzie
ograniczoności rozwiązań jest niepoprawny, co oznacza, że przedstawione przez nią
dowody globalnej stabilności stanów stacjonarnych również nie są poprawne. Z tego
powodu przedstawiamy tutaj poprawione dowody lokalnej i globalnej stabilności sta-
nów stacjonarnych. W dowodzie lokalnej stabilności skorzystaliśmy z twierdzenia o
linearyzacji dla układów równań różniczkowych z opóźnieniem, natomiast globalną
stabilność wykazaliśmy korzystając z funkcjonałów Lapunowa. Przyjęliśmy funk-
cjonały Lapunowa zaproponowane przez S. Çakan, jednak po wcześniejszym udo-
wodnieniu dodatkowych własności rozwiązań (dla stanu stacjonarnego wolnego od
infekcji) oraz funkcjonału (w przypadku endemicznego stanu stacjonarnego). Dzięki
temu uzyskaliśmy poprawne dowody globalnej i lokalnej stabilności stanów stacjo-
narnych.

2010 Klasyfikacja tematyczna AMS (2010): Primary: 34K20, 34K21; Secondary:
37N25, 92D30.

Słowa kluczowe: równania różniczkowe z opóźnieniem, funkcjonały Lyapunova, mo-
delowanie pandemii COVID-19, wydolność ochrony zdrowia, stany stacjonarne, lo-
kalna i globalna stabilność.
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