Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of the work reported here was to expand the capability of the NRC-Aerospace spin rig by adding an on-line damage detection, discrimination and tracking system, and to develop necessary expertise that will allow for optimizing the NDE inspection periods of gas turbine engine components in this facility and minimizing undetected crack nucleation and growth and possibility of catastrophic failures. Passive eddy-current sensors and a data acquisition system able to simultaneously measure blade deflection and tip clearance were selected to monitor health of rotating components. Before application of the system in the spin rig, the system was tested with a rotor rig to check sensor responses to deliberately induced changes in blade tip positions in both radial and circumferential directions. The monitored disc had 12 bolts simulating aerofoils that could be turned into threaded holes to extend or shorten the protruding parts of the bolts. On the other hand, bolt vibration was not excited and analysed during the experiment. Lessons learned on the rotor rig are used to prepare and plan spin tests in vacuum chamber.
Wydawca
Czasopismo
Rocznik
Tom
Strony
197--209
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Air Force Institute of Technology Księcia Bolesława Street 6, 01-494 Warsaw, Poland
autor
- National Research Council-Aerospace Ottawa, Ontario, Canada, K1A 0R6
autor
- National Research Council-Aerospace Ottawa, Ontario, Canada, K1A 0R6
Bibliografia
- [1] Beres, W., Assessment of the Remaining Life for Turbine Components Made of Advanced Materials through Analyses and Testing, COM 2015 Conference of Metallurgists, Advanced Aerospace Materials Symposium, Toronto, August 23-26, 2015.
- [2] Beres, W., Dudzinski, D., Murzionak, A., Fatigue crack growth rate evaluation in a turbine disc after spin rig testing, 12th International Conference on Fracture, ON, July 12-17, 2009, Paper 00587, pp. 1-10, Ottawa 2009.
- [3] Beres, W., Dudzinski, D., Tsang, J. Kearsey, R., Assessment of the residual life of a gas turbine spacer—successes and challenges, CASI Aero 2013, 19th CASI Propulsion Symposium, Toronto 2013.
- [4] Beres, W., Kearsey, R. M., Wu, X. J., Yang, Q., Dudzinski, D., Tsang, J., Research on advanced high temperature materials and protective coatings for new and legacy gas turbine engines for military platforms, Design, Modelling, Lifing and Validation of Advanced Materials in Extreme Military Environments, NATO STO AVT Symposium, Biarritz, MP-AVT-187, Paper 6, pp. 6.1-6.28, France 2012.
- [5] Beres, W., Zhang, Z., Dudzinski, D., Chen, W. R., Wu, X. J., Residual life assessment of a critical component of a gas turbine– achievements and challenges, Paper GT2014-26423, ASME Turbo Expo 2014, Düsseldorf, Germany 2014.
- [6] Brockman, R. A., Huelsman, M., John, R., Simulation of Deformation Modes for Damage Detection in Turbine Engine Disks, Materials Damage Prognosis, J. M. Larsen et al. (ed.), TMS, pp. 197-201, 2005.
- [7] Butz, M. G., Rodriquez, H. M., Propulsion Health Monitoring for Enhanced Safety, NASA Report, NASA/CR-2003-212291, 2003.
- [8] Chana, K., Sridhar, V., Sigh, D., The Use of Eddy Current Sensors for The Measurement of Rotor Blade Tip Timing: Development of A New Method Based on Integration, ASME Turbo Expo 2016, ASME Paper GT2016-57368, 2016.
- [9] Christodoulou, L., Larsen, J. M., Materials Damage Prognosis: A Revolution in Asset Management, Materials Damage Prognosis, J. M. Larsen et al. (ed.), TMS, pp. 3-10. 2005.
- [10] Dimitriadis, G., et al., Blade-Tip Timing Measurement of Synchronous Vibrations of Rotating Bladed Assemblies, Mechanical Systems and Signal Processing, Vol. 16, No. 4, pp. 599-622. 2002.
- [11] Haase, W. C., Drumm, M. J., Detection, Discrimination and Real-time Tracking of Cracks in Rotating Disks, IEEE Aerospace Conf. Paper No. 7803-7321X, 2002.
- [12] Heath, S., Imregun, M., An improved single parameter tip-timing method for turbomachinery blade vibration measurements using optical laser probes, International Journal of Mechanicals Sciences, Vol. 38, No. 10, pp. 1047-1058, 1996.
- [13] Immarigeon, J.-P., Beres, W., Au, P., Fahr, A., Wallace, W., Koul, A. K., Patnaik, P., Thamburaj, R., Life cycle management strategies for aging engines, NATO RTO Workshop on Life Management Techniques for Aging Engines, Manchester, UK, October 2001, Aging 208 Development of an On-Line Damage Detection, Discrimination and Tracking System for the Spin Rig Facility Mechanisms and Control, Specialists’ Meeting on Life Management Techniques for Ageing Air Vehicles, RTO-MP-079(II), pp. 17.1-17.16. 2003.
- [14] Immarigeon, J.-P., Koul, A. K., Beres, W., Au, P., Fahr, A., Wallace, W., Patnaik, P., Thamburaj, R., The aging of engines: an operator’s perspective, NATO RTO Lecture Series 218 on “Aging Engines, Avionics, Subsystems and Helicopter,” RTO-EN-14, pp. 2.1-2.20. 2000.
- [15] Knappett, D., Garcia, J., Blade tip timing and strain gauge correlation on compressor blades, Proc. IMechE Part G, Journal of Aerospace Engineering, Vol. 222, pp. 497-506. 2008.
- [16] Lewicki, D. G., et al. TF41 Engine Fan Disk Seeded Fault Crack Propagation Test, NASA/TM-2004-213092. 2004.
- [17] Meier, M., Shiryayev, O. V., Slater, J. C., Investigation of Candidate Features for Crack Detection in Fan and Turbine Blades and Disks, AIAA Paper 2009-2671, 2009.
- [18] Noncontacting Detection of Turbine Blade Vibration: Technology Assessment, 1004559, Final Report, EPRI, December 2002.
- [19] Przysowa, R., Kaźmierczak, K. Triggering methods in blade tip-timing systems, [in:] Vibration Engineering and Technology of Machinery, VETOMAC XII, ISBN 978-83-61021-69-8, Warsaw 2016.
- [20] Przysowa, R., Tuzik, A., Data Management Techniques for Blade Vibration Analysis, Journal of KONBiN, 37.1: 95-132, 2016.
- [21] Recommended practices for monitoring gas turbine engine life consumption, NATO RTO Working Group AVT-017 Report, RTO Technical Report RTO-TR-28. 2000.
- [22] Sarlashkar, S., et al., Model-Based Analysis in Support of the TF-41 Seeded- Fault Testing, IEEE Paper 0-7803-7651-X/03, 2003.
- [23] Sonnichsen, E., Real-time detection of developing cracks in jet engine rotors, Aerospace Conference Proceedings, 2000 IEEE, pp. 173-183. 2000.
- [24] Tappert, P., et al., Autonomous PHM with Blade-Tip Sensors: Algorithms and Seeded Fault Experience, IEEE Conference, pp. 7-3287-7-3295. 2001.
- [25] Tappert, P., Losh, D., Mercadal, M., Analyze Blade Vibration User's Manual, Hood Technology Corporation 2007.
- [26] Tappert, P., The Last Few Minutes Prior to a Fatigue Blade Failure in an Axial Compressor: Observation of Blade Vibration and Blade Lean, IEEE Aerospace Conference Paper No. 1620, 2007.
- [27] Test Cell and Controls Instrumentation and EHM Technologies for Land, Sea and Air Military Gas Turbine Engines, NATO STO AVT-229 Symposium, www.sto.nato.int, ISBN 978-92-837-2070-6, Rzeszow, Poland 2015.
- [28] Turbine Engine Fan Disk Crack Detection Test, US Federal Aviation Administration Report No. DOT/FAA/AR-04/28, September 2004.
- [29] Von Flotow, A., et al., Health Monitoring and prognostics of Blades and Disks with Blade Tip Sensors, 2000, IEEE Aerospace Conference, 2000.
- [30] Wang, W., Disk Crack detection in Spin Testing using Tip Timing Data, IEEE Aerospace [31] Wu, X. J., Beres, W., Yandt, S., Challenges in life prediction of gas turbine critical components, Canadian Aeronautical and Space Journal, Vol. 54, pp. 31-39, 2008.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faee742e-aeb7-4fe3-be24-08a1f216c5c8