PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Pumice Powder on Mechanical, Thermal, and Water Absorption Properties of Fiberboard Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composites were produced using medium-density fiberboard (MDF) flour with pumice powder which was mixed at various ratios by the hand lay-up technique. Mechanical properties, such as tensile and three-point bending strengths, were determined by ASTM D3039 and ASTM D790 respectively. The best three-point bending and tensile strength properties were maximum values obtained from composites containing 20wt% pumice powder (pp) and 50wt% pumice powder (pp) respectively. It is observed that the water absorption rate into the composites decreases with an increase in the pumice powder-to-ratio. The composite filled with 50wt%pumice powder absorbed the least amount of water compared to the other composites. All composites were characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimetry analysis (DSC). SEM images revealed a near-homogeneous surface partly free of defects and holes. However, lateral profile images showed the presence of MDF flour particles agglomerated and a considerable number of bubbles and cavities that could interfere with the mechanical properties of the composites. The results of the mechanical, and thermal properties suggested that pumice powder epoxy composites with MDF flour can increase their tensile, three-point-bending strength, and glass transition temperature for the pure MDF flour composite.
Rocznik
Strony
30--36
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Department of Textile, Van Vocational School, Van Yuzuncu Yil University, Van, Turkey
autor
  • Department of Materials and Material Processing Technology, Van Vocational School, Van Yuzuncu Yil University, Van, Turkey
autor
  • Department of Manufacturing Engineering, Faculty of Technology, Gazi University, Ankara, Turkey
Bibliografia
  • 1. Ayrilmis, N. Kara, M.E. (2013). Resination techniques on the mechanical properties of medium density fiberboard. BioResources, 8(1): 420-426.
  • 2. Kose, C., Terzi, E., Buyuksari, U, Avci, E., Ayrilmiş, N., Kartal, S. N., and Imamura, Y. (2011). Particleboard and MDF panels made from a mixture of wood and pinecones: Resistance to decay fungi and termites under laboratory conditions, BioResources 6(2): 2045-2054.
  • 3. Bozkurt, F., Avci, B., and Mengeloğlu, F. (2021). Utilization of melaminę impregnated paper waste as a filler in thermoplastic composites, BioResources, 16(2): 3159-3170.
  • 4. Ustaomer, D. (2020). “The combined effects of alkali treatment and ammonium bicarbonate addition on selected properties of MDF panels, BioResources,15(4): 9143-9154.
  • 5. Roffael, E., Dix, B., Schneider, T., Kraft, R. (2003): Extractable urea in MDF, manufactured using the blowline and blender processes. Wood as Raw Material and Material, 61: 68 (Short Originalia).
  • 6. Ozkaya, K., Ayrilmiş, N., Ozdemir, S. (2015). Potential use of waste marble powder as adhesive filler in the manufacture of laminated venner lamber. BioResources, 10(1):1985-1686.
  • 7. Ramesan, M.T., George, A., Jayakrishnan, P., Kalaprasad, G. (2016). Role of pumice particles in the thermal, electrical and mechanical properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) composites. J. Term Anal Calorim, (126):5511-519. doi: 10.1007/s10973-016-5507-6
  • 8. Sever, K., Atagür, M., Tunçalp, Altay, L., Seki, Y., M., Sarıkanat, M.( 2018). The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of thermoplastic Composite Materials. 32(8):1092-1106.
  • 9. Sahin, AE., Yildiran, Y., Avcu, E., Fidan, S., Sinmazcelik, T. (2014). Mechanical and thermal properties of pumice powder filled PPS composites. Acta Phys Polym A, (125): 518-520.
  • 10. Dike, A.S., (2020). Modification of pumice mineral and ıts use as additive for poly (lactic acid) based bio-composite materials. AKU J. Sci. Eng., (20):111-117.
  • 11. ASTM D3039 (2017). “Standard test method for tensile properties of polimer matrix composite materials,” ASTM International, West Conshohocken, PA.
  • 12. ASTM D790 (2017). “Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials,” ASTM International, West Conshohocken, PA.
  • 13. Krishna, M.P., Kireeti, M.P., Krishna, M.R., Jyothi, Y., Swami, G.R.K. (2018). Mechanical properties of fly/sawdust reinforced epoxy hybrid composites. Materials Today Proceedings, (5):13025-13030.
  • 14. Chung T-J., Park J-W., Ji Lee H., Kwon H-J., Kim H-J., Lee Y-K., Tai Yin Tze W. (2018). The improvement of mechanical properties, thermal stability, and water absorption resistance of an ecofriendly PLA/Kenaf biocomposite using acetylation. Applied Sciences, (8): 376 doi/10.3390/aap.80330376
  • 15. Biplab, K., Maji, T.K. (2012). Effect of silica nanopowder on the properties of wood flow/polymer composite. Polymer Eng. Sci.,1516-1523. doi: 10.1002/pen
  • 16. Ameer MH, Shaker K, Ashraf M, Karahan M, Nawab Y, Ahmad S, Nasir M, (2017) Interdependence of moisture, mechanical properties, and hydrophobic treatment of jute fibre-reinforced composite materials, The Journal of the Textile Institute, 108(10): 1768-1776.
  • 17. Liu Y., Kontopoulou M. (2006). The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nanosilica. Polymer, 247(22): 7731-7739.
  • 18. Zheng Y., Nıng R. (2003). Effects of nanoparticles SiO2 on the performance of nanocomposites. Materials Letters, 57: 2940-44.
  • 19. Leong, Y.W., AbuBakar, M.B, Mond, Z.A., Ariffin, I. A. Pukanszky, B. (2004). Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl Polym Sci, 91(5): 3315–3326.
  • 20. Müller G., Schöpper C., Vos H., Kharazipour A.R., Polle A. (2009). FTIR ATR spectroscopic analyses of changes in wood properties during particle and fibreboard production of hard and softwood tress. BioResources, (4)1: 49-71.
  • 21. Mendes, C.P., Fleming, R., Goncalves, A.M.B., Da Silva, M.J., Prataviera, R., Cena, C. (2021). Mechanical and microstructural characterization of epoxy/sawdust (Pinus elliottii) composite. Polymers and polimer composites,29(8):1135-1142. Doi: 10.1177/0967391120956504
  • 22. Vaxman A., Narkis N., Siegmann A., Kenig S. (1989). Void formation in shortfiber thermoplastic composites. Polymer composites,10(6), 449-453.
  • 23. Lubis, M-A., Hong, M‑K. Park, B‑D., Le, S‑M. (2018) Effects of recycled fiber content on the properties of medium density fiberboard. European Journal of Wood and Wood Products, 76:1515–1526.
  • 24. Ravikumar P., Rajeshkumar G., Prakashmaran J., Abdullal Al Dhsbi N., Karuppiah P. (2021). Evaluation of mechanical and water absorption behaviors of Jute/ Carbon fiber reinforced polyester hybrid composites. Journal of Natural Fibers, 1-13. doi: 10.1080/15440478.2021.1924339
  • 25. Cui, Y.H., Tao, J., Noruzıaan, B., Cheung, M., Lees, S. (2010). DSC analysis and mechanical properties of wood–plastic composite. Journal of Reinforced Plastics and Composites, 29(2): 277-289.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faeda4dd-ac8a-4654-a961-1a699d3889d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.