PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Comparison of transformer modeling on riser pole arresters behavior during switching transients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arresters are widely used in power systems to protect other equipment against overvoltages. However, in some conditions, they can’t operate successfully. One of the disturbances leading to the failure of the riser pole arresters is the ferroresonance overvoltages. In this paper, at first the influence of different transformer simulation models of ATP software on the occurrence of ferroresonance is studied and then the effect of ferroresonance on the riser pole arrester has been scrutinized through the thermal and electrical performance of the arrester in an underground distribution system. The results show that the arrester temperature rises due to energy dissipation in a ferroresonance circumstance, which indeed may result into the explosion of the arrester. Also, applying different models of the transformer in the ATP software and comparing the results, it is shown that the available models do not show the same effect on the arrester.
Rocznik
Strony
717--730
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wz.
Twórcy
  • Amirkabir University of Technology Department of Electrical Engineering 424 Hafez Ave, Tehran, Iran
autor
  • Amirkabir University of Technology Department of Electrical Engineering 424 Hafez Ave, Tehran, Iran
  • Amirkabir University of Technology Department of Electrical Engineering 424 Hafez Ave, Tehran, Iran
Bibliografia
  • [1] Bohmann L.J., McDaniel J., Stanek E.K., Lightning arrester failure and ferroresonance on a distribution system, IEEE Transactions on Industry Applications. vol. 29, no. 6, pp. 1189-1195 (1993).
  • [2] Walling R.A., Hartana R.K., Reckard R.M., Sampat M.P., Balgie T.R., Performance of metal-oxide arresters exposed to ferroresonance in padmount transformers, IEEE Transactions on Power Delivery, vol. 9, no. 2, pp. 788-795 (1993).
  • [3] Dugan R.C., Examples of ferroresonance in distribution systems, IEEE Power Engineering Society General Meeting, Toronto, Canada, pp. 1213-1215 (2003).
  • [4] MacPhee A., McKee S., Simpson R., Ferroresonance in electrical systems, COMPEL, The International Journal For Computation And Mathematics In Electrical and Electronic Engineering, vol. 21, no. 2, pp. 265-273 (2004).
  • [5] Dugan R.C., McGranaghan M.F., Beaty H.W., Santoso S., Electrical power systems quality, McGraw-Hill company (2003).
  • [6] Valverde V., Zamora I., Buigues G., Mazon A.J., Ferroresonance in voltage transformers: Analysis and simulations, International Conference on Renewable Energies and Power Quality (ICREPQ”07), Sevilla, Spain, pp. 465-471 (2007).
  • [7] Sakshaug E., Burke J., Kresge J., Metal oxide arresters on distribution systems: fundamental considerations, IEEE Transactions on Power Delivery, vol. 4, no. 4, pp. 2076-2089 (1989).
  • [8] Short T., Burke J., Mancao R.T., Application of MOVs in the distribution environment, IEEE Transactions on Power Delivery, vol. 9, no. 1, pp. 293-305 (1994).
  • [9] Pattanapakdee K., Banmongkol C., Failure of riser pole arrester due to station service transformer ferroresonance, International Conference on Power Systems Transients (IPST), Lyon, France (2007).
  • [10] Jazebi S., Farazmand A., Murali P., A Comparative Study on π and T Equivalent Models for the Analysis of Transformer Ferroresonance, IEEE Transactions on Power Delivery, 2013, vol. 1, no. 28 pp. 526-528 (2013).
  • [11] Viena L., Moreira A., Ferreira R., de Castro A., de Jesus N., Analysis and application of transformer models in the ATP program for the study of ferroresonance, Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), pp. 738-743 (2010).
  • [12] Sadeghkhani I., Ketabi A., Feuillet R., An approach to evaluate switching overvoltages during power system restoratin, Serbian Journal of Electrical Engineering, vol. 9, no. 2, pp. 171-187 (2012).
  • [13] Mork B., Gonzalez F., Ishchenko D., Hybrid transformer model for transient simulation – Part I: Development and parameters, IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 248-255 (2007).
  • [14] Prikler L., Høidalen H.K., ATPDraw version 3.5 for Windows 9x/NT/2000/XP User’s Manual, Sinef Energy Research (2002).
  • [15] www.arresterworks.com, accessed November 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fadb97f8-e1d7-4e3e-b3a9-52103725bd86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.