PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ dodatkowego pola magnetycznego podczas napylania magnetronowego na efekt GMR w strukturach cienkowarstwowych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Influence of an additional magnetic field during magnetron sputtering on the GMR effect in thin-film structures
Języki publikacji
PL
Abstrakty
PL
W artykule wskazano zasadność badań nad technologią struktur wykazujących zjawisko gigantycznego magnetooporu. Przedstawiono proces napylania magnetronowego oraz sposoby ukierunkowania namagnesowań warstw ferromagnetycznych w strukturach cienkowarstwowych. W wyniku przeprowadzonych pomiarów rezystancji otrzymanych struktur potwierdzono wpływ zastosowania zewnętrznego pola magnetycznego podczas napylania warstw ferromagnetycznych na powtarzalność zjawiska gigantycznego magnetooporu.
EN
The article shows the validity of research of structures showing the phenomenon of giant magnetoresistance. Magnetron sputtering process and methods of inducing direction of magnetization of ferromagnetic layers in thin-film structures are presented. As a result of the resistance measurements of structures, the influence of the application of an external magnetic field during ferromagnetic layers sputtering process on the repeatability of the giant magnetoresistance effect was confirmed.
Rocznik
Strony
192--195
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Politechnika Lubelska, Wydział Elektrotechniki i Informatyki, ul. Nadbystrzycka 38B, 20-618 Lublin
Bibliografia
  • [1] Baibich M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61 (1988), 2472–2475.
  • [2] Binasch G., Grünberg P., Saurenbach F., Zinn W., Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39 (1989), 4828–4830.
  • [3] Gerstner E. Nobel Prize 2007: Fert and Grünberg. Nat. Phys. 3 (2007), 754–754.
  • [4] Hirohata A. et al. Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509 (2020), 166711.
  • [5] Kadve A. Trade Of Between SSD and HDD. Int. J. Res. Appl. Sci. Eng. Technol,. 4 (2016), 473–475.
  • [6] Tehrani S. et al., High density submicron magnetoresistive random access memory (invited). J. Appl. Phys., 85 (1999), 5822–5827.
  • [7] Reig C., Cubells-Beltrán M. D., Muñoz D. R. Magnetic field sensors based on Giant Magnetoresistance (GMR) technology: Applications in electrical current sensing, Sensors 9 (2009), 7919–7942.
  • [8] Leitão D. C., Borme J., Orozco A., Cardoso S., Freitas P. P. Magnetoresistive sensors for surface scanning, Smart Sensors. Measurement and Instrumentation, 6 (2013), 275–299.
  • [9] Kapser K., Weinberger M., Granig W., Slama P., GMR Sensors in Automotive Applications, Smart Sensors. Measurement and Instrumentation, 6 (2013), 133-155.
  • [10] Djamal M., Ramli, Khairurrijal, Giant magnetoresistance material and its potential for biosensor applications. Int. Conf. Instrumentation, Commun. Inf. Technol. Biomed. Eng. (2009), 1–6.
  • [11] Krishna V. D., Wu K., Perez A. M., Wang J. P., Giant magnetoresistance-based biosensor for detection of influenza A virus. Front. Microbiol. 7 (2016), 1–8.
  • [12] Gupta S., Kakkar V., DARPin based GMR Biosensor for the detection of ESAT-6 Tuberculosis Protein. Tuberculosis 118 (2019), 101852.
  • [13] Llandro J., Palfreyman J. J., Ionescu A., Barnes C. H. W., Magnetic biosensor technologies for medical applications: A review, Medical and Biological Engineering and Computing, 48 (2010), 977–998.
  • [14] Gao H. et al., Research on vibration sensor based on giant magnetoresistance effect, Rev. Sci. Instrum., 90 (2019), 105001.
  • [15] Djamal M., Ramli, Development of sensors based on giant magnetoresistance material. Procedia Eng., 32 (2012), 60–68.
  • [16] Baraduc C., Chshiev M., Dieny B., Spintronic Phenomena: Giant Magnetoresistance, Tunnel Magnetoresistance and Spin Transfer Torque, Smart Sensors. Measurement and Instrumentation, 6 (2013), 1-30.
  • [17] Sabrie S., Sensors Handbook, second edition, McGraw-Hill Professional (2010).
  • [18] Tsymbal E. Y., Pettifor D. G., Perspectives of giant magnetoresistance. Solid State Physics, 56 (2001), 113–237.
  • [19] Johnson A., Spin Valve Systems for Angle Sensor Applications, Tech. Univ. Darmstadt (2004).
  • [20] Jyoko, Y., Kashiwabara, S., Hayashi, Y., Preparation of Giant Magnetoresistance Co-Cu Heterogeneous Alloys by Electrodeposition. J. Electrochem. Soc., 144 (1997) 193–195.
  • [21] Rajasekaran, N., Mohan, S., Giant magnetoresistance in electrodeposited films: Current status and the influence of parameters, Crit. Rev. Solid State Mater. Sci., 37 (2012), 158– 180.
  • [22] Parkin, S. S. P., More, N., Roche, K. P., Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr., Phys. Rev. Lett., 64 (1990), 2304–230.
  • [23] Bakonyi I., Péter L., Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems, Progress in Materials Science, 55 (2010), 107–245.
  • [24] Kelly P. J., Arnell R. D., Magnetron sputtering: A review of recent developments and applications, Vacuum, 56 (2000), 159–172.
  • [225] Katada H. et al., Induced uniaxial magnetic anisotropy field in very thin NiFe and CoZrNb films, IEEE Trans. Magn., 36 (2000), 2905–2908.
  • [26] Albisetti E. et al., Temperature dependence of the magnetic properties of IrMn/CoFeB/Ru/CoFeB exchange biased synthetic antiferromagnets, Materials (Basel), 13 (2020) nr 2, 387.
  • [27] Zhao Z. D. et al., Large enhancement of magnetoresistance in NiFe film with MgO layers sandwiched after annealing, Appl. Surf. Sci., 321 (2014), 554–559.
  • [28] Chen L., Zhou Y., Lei C., Zhou Z. M., Ding W., Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film, J. Magn. Magn. Mater., 322 (2010), 2834–2839.
  • [29] Chen J., Ma J., Wu L., Shen Y., Nan C. W., Magnetic anisotropy of Fe films deposited by dc magnetron sputtering under an external magnetic field, Science Bulletin, 60 (2015), 1214–1217.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fad9dbe4-d2c3-49b0-b9a4-cb6c0709b72f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.