Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Buildup of magnetic mineral particles on matrices determines the saturated deposit volume of minerals, which is of great importance in the high gradient magnetic separation (HGMS) systems. In this paper buildup of fine weakly magnetic minerals on the matrix is studied with a force equilibrium model. Elaborate rules of particle buildup on the matrix are presented. An imaginary sector ring is used to approximately quantify the volume of saturated particle buildup. The influence of the particle size, magnetic induction, fluid viscosity and velocity as well as matrix size on saturated particle buildup is investigated and discussed. With the same matrix size, the saturated buildup volume decreases with the decrease of the particle size, applied magnetic induction and increase of the fluid viscosity and velocity. The saturated buildup volume normalized by the matrix volume, and the ratio of particle deposit volume to the matrix volume (Vd/Vm) decreases with the increase of the matrix size. Under the same matrices packing fraction, the total mineral deposit volume, when adopting small size matrices, is larger than that when adopting large size matrices. Only small size matrices can be used for recovery of minerals in size of several micrometers. Based on performed analyses, the ore feeding time in a cycle for a cyclic HGMS system and the rotation speed of the swivel for a continuous HGMS system under different circumstances are also discussed.
Słowa kluczowe
Rocznik
Tom
Strony
94--109
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083,China
autor
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083,China
autor
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083,China
Bibliografia
- BADESCU V., MURARIU V., ROTARIU O., REZLESCU N., 1996, A new modeling of the initial buildup evolution on a wire in and axial HGMF filter, Journal of Magnetism and Magnetic Materials, 163(1-2), 225-231.
- BRISS R., GERBER R., PARKER M., 1980, Statics of particle capture in HGMS, IEEE Transactions on Magnetics, 16(5), 830-832.
- CHEN F., SMITH K.A., HATTON T.A., 2012, A dynamic buildup growth model for magnetic particle accumulation on single wires in high gradient magnetic separation, American Institute of Chemical Engineers, 58(9), 2865-2874.
- CHEN L., ZENG J., GUAN C., ZHANG H., YANG R., 2015, High gradient magnetic separation in centrifugal field, Minerals Engineering, 78, 122-127.
- CHIMMA P., PANNADAPORN P., SRATONGNO P., 2010, Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells, Malaria Journal, 9(1), 38.
- CIBULKA J., ŽŮREK F., KOLÁŘ O., HORÁČEK M., HENCL V., SUSLIKOV G.F., LOMOVTSEV L.A., GRAMM V.A., DAVYDOV Yu.A., 1985, A new concept of high-gradient magnetic separators, In: Proc. 15th Int. Miner. Proc. Congress, Cannes, France, p.363.
- CIESLA A., 1996, The analysis of the matrix separator operating states with the superconductor magnet constituting a source of field, Wydawnictwa AGH, seria: Dissertations, Monographs, No. 44.
- CIESLA A., 2004, Use of superconductor magnet to the magnetic separation: some selected problems of exploitation, International Journal of Applied Electromagnetics and Mechanics, 19, 327-331.
- CIESLA A., 2006, Computer modeling of the magnetic particles trajectories in the matrix separator, Proceedings of International Symposium on Numerical Field Calculation in Electrical Engineering, TU, Graz.
- CIESLA A., 2007, Macro- and microscopic approach to the problem of distribution of magnetic field in the working space of the separator, Proceedings of XIII international Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Prague, pp.13-15.
- GAO L., CHEN Y., 2010, A study on the rare earth ore containing scandium by high gradient magnetic separation, Journal of Rare Earth, 28(4), 622-626.
- IANNICELLI J., MILLMAN N., STONE W.J.D., 1969, Process for improving the brightness of clays, US Patent 3, 471, 011.
- INGLIS D.W., 2004, Continuous microfluidic immunomagnetic cell separation, Applied Physics Letters, 85(21), 5093-5095.
- INGLIS D.W., RIEHN R., STURM J.C., AUSTIN R.H., 2006, Microfluidic high gradient magnetic cell separation, Journal of Applied Physics, 99(8), 08K101-08K103.
- JONES G.H., 1960, Wet magnetic separator for feebly magnetic minerals. In: Proc. 5th Int. Miner. Proc. Congress, London, p. 717.
- KATHARINA M., JOHANNES L., HERMANN N., 2012, Removal of magnetite particles and lubricant contamination from viscous oil by High-Gradient Magnetic Separation technique, Separation and Purification Technology, 92, 122-128.
- LI Y., WANG J., WANG X., WANG B., LUAN Z., 2011, Feasibility study of iron minerals separation from red mud by high gradient superconducting magnetic separation, Physica C, 471(3/4), 91-96.
- LUBORSKY F.E., DRUMMOND B.J., 1975, High gradient magnetic separation: theory versus experiment, IEEE Transactions on Magnetics, 11(6), 1696-1700.
- LUBORSKY F.E., DRUMMOND B.J., 1976, Buildup of particles on fibers in a high field-high gradient separator, IEEE Transactions on Magnetics, 12(5), 463-465.
- MAASS W., DUSCHL M., HOFFMANN H., FRIEDLAENDER F.J., 1983, A new model for the explanation of the saturation buildup in the transverse HGMS configuration, Applied Physics A: Materials Science and Processing, 32(2), 79-85.
- MARSTON P.G., NOLAN J.J., 1975, Moving matrix magnetic separator, US Patent 3, 920, 543.
- MERINO-MARTOS A., 2011, Setting up high gradient magnetic separation for combating eutrophication of inland water, Journal of Hazardous Materials, 186(2-3), 2068-2074.
- MISHIMA F., HAYASHI S., AKIYAMA Y., NISHIJIMA S., 2012, Development of a superconducting high gradient magnetic separator for highly viscous fluid, IEEE Transactions on Applied Superconductivity, 22(3), 3700204.
- NATENAPIT M., SANGLEK W., 1999, Capture radius of magnetic particles in random cylindrical matrices in high gradient magnetic separation, Journal of Applied Physics, 85(2), 660-664.
- NESSET J.E., FINCH J.A., A loading equation for high gradient magnetic separators and application in identifying the fine size limit of recovery, Fine Particles Processing (edited by Somasundaran P.), New York: AIME, 1980, pp. 1217-1241.
- NESSET J.E., FINCH J.A., 1981, The static (buildup) model of particle accumulation on single wires in high gradient magnetic separation: experimental confirmation, IEEE Transactions on Magnetics, 17(4), 1506-1509.
- NESSET J.E., FINCH J.A., 1984, The buildup model of HGMS modified for field-dependent susceptibility minerals, Canadian Metallurgical Quarterly, 23(4), 479-480.
- NING E., WANG M., YANG H., 2012, Physical design of high gradient superconducting magnetic separation magnet for kaolin, IEEE Transactions on Applied Superconductivity, 22(3), 3700104.
- NOMURA N., MISHIMA F., AKIYAMA Y., NISHIJIMA S., 2012, Fundamental study on removal arsenic by magnetic separation, IEEE Transactions on Applied Superconductivity, 22(3), 3700304.
- SCHLICHTING H.. Boundary-Layer Theory. New York: McGraw-Hill, 1968, p,154.
- SVOBODA J., 1994, The effect of magnetic field strength on the efficiency of magnetic separation, Minerals Engineering, 7(5-6), 747-757.
- SVOBODA J., FUJITA T., 2003. Recent developments in magnetic methods of mineral separation, Minerals Engineering, 16(9), 785-792.
- UEDA H., AGATSUMA K., FURESE M., 2014, Performance of filters in medical protein separation system using superconducting magnet, IEEE Transactions on Applied Superconductivity, 24(3), 1-5.
- WATSON J.H.P., 1973, Magnetic filtration, Journal of Applied Physics, 44(9), 4209-4213.
- WU W.I., WU C.H., HONG P.K., LIN C.F., 2011, Capture of metallic copper by high gradient magnetic separation system, Environmental Technology, 32(13), 1427-1433.
- XIONG D., 1997, Development and applications of SLon vertical ring and pulsating high gradient magnetic separators, Proceedings of XX IMPC, Aachen, pp. 21-26.
- ZENG S., ZENG W., REN L., AN D., LI H., 2015, Development of a high gradient permanent magnetic separator (HGPMS), Minerals Engineering, 71, 21-26.
- ZENG W., XIONG D., 2003, The latest application of SLon vertical ring and pulsating high-gradient magnetic separator, Minerals Engineering, 16(6), 563-565.
- ZHENG X., WANG Y., LU D., 2015, Study on capture radius and efficiency of fine weakly magnetic minerals in high gradient magnetic field, Minerals Engineering, 74, 79-85.
- ZHENG X., WANG Y., LU D., 2015, A realistic description of influence of the magnetic field strength on high gradient magnetic separation, Minerals Engineering, 79, 94-101.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fad6fc8c-8805-43aa-bc66-5e4c336e1165