Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Previous researchers have been widely studied the equation for calculating the energy dissipation in USBR Type IV, applied in the stilling basin structure as an energy dissipator. However, inefficient energy dissipating basins are commonly found in the field due to the large discharge and high water head, potentially damaging the bottom of the energy dissipating basin and its downstream river. Therefore, an energy dissipator plan fulfilling the safe specifications for the flow behaviour that occurred is required. This study aimed to determine the variation of the energy dissipators and evaluate their effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was undertaken on the USBR Type IV spillway system. The novelty of this experiment showed that combination and modification dissipation features, such as floor elevation, end threshold and riprap lengthening, could effectively dissipate the impact of energy downstream. The final series exhibited a significantly higher Lj/y1 ratio, a favourable condition due to the compaction of the hydraulic jump. There was also a significant increase in the downstream tailwater depth (y2) during the jump formation. Therefore, the final series energy dissipator was better in the stilling basin design for hydraulic jump stability and compaction. The increase in energy dissipation for the final series type was the highest (98.4%) in Q2 and the lowest (84.8%) in Q10 compared to the original series. Therefore, this type can better reduce the cavitation risk damaging to the structure and downstream of the river.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
68--72
Opis fizyczny
Bibliogr. 22 poz., fot., tab., wykr.
Twórcy
- Universitas Syiah Kuala, Faculty of Engineering, Civil Engineering Department, Syech Abdur-Rauf No 7, Darussalam, 23111, Banda Aceh, Indonesia
autor
- Universitas Syiah Kuala, Faculty of Engineering, Civil Engineering Department, Syech Abdur-Rauf No 7, Darussalam, 23111, Banda Aceh, Indonesia
autor
- Universitas Syiah Kuala, Faculty of Engineering, Electrical Engineering Department, Banda Aceh, Indonesia
autor
- Universitas Syiah Kuala, Faculty of Engineering, Civil Engineering Department, Syech Abdur-Rauf No 7, Darussalam, 23111, Banda Aceh, Indonesia
autor
- Universitas Syiah Kuala, Faculty of Engineering, Civil Engineering Department, Syech Abdur-Rauf No 7, Darussalam, 23111, Banda Aceh, Indonesia
Bibliografia
- ABBASPOUR A., PARVINI S., DALIR A.H. 2016. Effect of buried plates on scour profiles downstream of hydraulic jump in open channels with horizontal and reverse bed slopes. Water Science and Engineering. Vol. 9(4), 329e335 p. 1–11. DOI 10.1016/j.wse.2017.01.003.
- ABDEL AAL G.M., SOBEAH M., HELAL E., EL-FOOLY M. 2018. Improving energy dissipation on stepped spillways using breakers. Ain Shams Engineering Journal. Vol. 9(4) p. 1887–1896. DOI 10.1016/j.asej.2017.01.008.
- ALAM R.R.R., TAUFIQ M. 2018. Kajian hidrolika pelimpah samping pada model fisik bendungan Pasuruhan Kabupaten Magelang Provinsi Jawa Tengah dengan Skala 1:60 [Study of side spillway hydraulics on the physical model of the Pasuruan Dam, Magelang Regency, Central Java Province with a scale 1:60] [online]. Thesis of Water Engineering, Engineering Faculty – Brawijaya University. [Access 15.05.2021]. Available at: http://repository.ub.ac.id/12870/1/Rizki%20Robbi%20Rahman%20Alam.pdf
- ALI A.M., EL-BELASY A., ROUSHDY M., BAHGAT M., ABDELHAQ A., ATTIA K., ..., EL-DIN E. 2010. A hybrid approach to improve the design of stilling basin [online]. Cairo. NBCBN pp. 123. [Access 15.05.2021]. Available at: https://www.nbcbn.com/ctrl/images/img/uploads/2334_31105417.pdf
- ALTALIB A.N., MOHAMMED A.Y., HAYAWI H.A. 2019. Hydraulic jump and energy dissipation downstream stepped weir. Flow Measurement and Instrumentation. Vol. 69, 101616. DOI 10.1016/j.flowmeasinst.2019.101616.
- AZMERI A., BASRI H., YULIANUR A., ZIANA Z., JEMI F.Z., RAHMAH R.A. 2021. Hydraulic jump and energy dissipation with stepped weir. Journal of Water and Land Development. No. 51 p. 55–61. DOI 10.24425/jwld.2021.139015.
- BABAALI H., SHAMSAI A., DAN VOSOUGHIFAR H. 2015. Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes. Arabian Journal Science Engineering. Vol. 40 p. 381–395. DOI 10.1007/s13369-014-1466-z.
- BABAALI H., MOJTAHEDI A., SOORI N. 2019. Numerical modeling of flow in USBR II stilling basin with end adverse slope. International Journal of Environmental and Ecological Engineering. Vol. 13. No. 2 p. 62–68. DOI 10.5281/zenodo.2571959.
- BEJESTAN M.S., NEISI K. 2009. A new roughened bed hydraulic jump stilling basin. Asian Journal of Applied Sciences. Vol. 2(5) p. 436–445. DOI 10.3923/ajaps.2009.436.445.
- CHANSON H. 2009. Current knowledge in hydraulic jumps and related phenomena. European Journal of Mechanics B/Fluids. Vol. 28(2) p. 191–210. DOI 10.1016/j.euromechflu.2008.06.004.
- CHAOCHAO L., CHUANQI L., JIE G. 2015. Hydraulic model and numerical simulation for bend stilling basin. 8th International Conference on Intelligent Computation Technology and Automation p. 454–457. DOI 10.1109/ICICTA.2015.119.
- DSDA 2020. Laporan Final Model Tes dan Penyelesaian Desain Bendungan Krueng Sabe Kabupaten Aceh Jaya [Banda Aceh final report model test and design completion of the Krueng Sabe Dam Aceh Jaya Regency]. Banda Aceh. Dinas Sumber Daya Air Provinsi Aceh pp. 100 [unpublished].
- GHALEH M.R., MOGHADDAM M. A., BAJESTAN M. S. 2020. Control of bed scour downstream of ski-jump spillway by combination of six-legged concrete elements and riprap. Ain Shams Engineering Journal. Vol. 11 Iss. 4 p. 1047–1059. DOI 10.1016/j.asej.2020.01.009.
- HUSAIN D., NEGM A.A.M., ALHAMID A.A. 2010. Length and depth of hydraulic jump in sloping channels. Journal of Hydraulic Research. Vol. 32(6) p. 899–910. DOI 10.1080/00221689409498697.
- KAZEMI F., KHODASHENAS S.R., SARKARDEH H. 2016. Experimental study of pressure fluctuation in stilling basins. International Journal of Civil Engineering. Vol. 14 p. 13–21. DOI 10.1007/s40999-016-0008-3.
- KIM Y., CHOI G., PARK H., BYEON S. 2015. Hydraulic jump and energy dissipation with sluice gate. Water. Vol. 7 p. 5115–5133. DOI 10.3390/w7095115.
- LI L.X., LIAO H.S., LIU D., JIANG S.Y. 2015. Experimental investigation of the optimisation of stilling basin with shallow-water cushion used for low Froude number energy dissipation. Journal of Hydrodynamics. Vol. 27(4) p. 552–529. DOI 10.1016/S1001-6058(15)60512-1.
- SHERRY L.H., KEM C.K. 2021. Types I, II, III, and IV stilling basin performance for stepped chutes applied to embankment dams. American Society of Civil Engineers Journal of Hydraulic Engineering. Vol. 147. Iss. 6. Art. 06021004. DOI 10.1061/(ASCE)HY.1943-7900.0001877.
- SKUTCH J. 1997. Minor irrigation design DROP – Design manual. Hydraulic analysis and design of energy-dissipating structures [online]. Report OD/TN 86. Wallingford. HR Wallingford Ltd. pp. 11. [Access 10.05.2021]. Available at: https://assets.publish-ing.service.gov.uk/media/57a08db1e5274a31e00019cc/R5830-odtn86.pdf
- SULISTIONO B., MAKRUP L. 2017. Study of hydraulic jump length coefficient with the leap generation by canal gate model. American Journal of Civil Engineering. Vol. 5(3) p. 148–154. DOI 10.11648/j.ajce.20170503.14.
- TIWARI H.L., GOEL A. 2016. Effect of impact wall on energy dissipation in stilling basin. KSCE Journal of Civil Engineering. DOI 10.1007/s12205-015-0292-5.
- USBR 1987. Design of small dams. A water resources technical publication [online]. 3 rd ed. Denver. United States Department of the Interior, Bureau of Reclamation pp. 860. [Access 10.05.2021]. Available at: https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/SmallDams.pdf
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fad31bb8-3007-4646-92f8-df6eb81d46fa