PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of nodalization effects on the prediction error of generalized finite element method used for dynamic modeling of hot water storage tank

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents dynamic model of hot water storage tank. The literature review has been made. Analysis of effects of nodalization on the prediction error of generalized finite element method (GFEM) is provided. The model takes into account eleven various parameters, such as: flue gases volumetric flow rate to the spiral, inlet water temperature, outlet water flow rate, etc. Boiler is also described by sizing parameters, nozzle parameters and heat loss including ambient temperature. The model has been validated on existing data. Adequate laboratory experiments were provided. The comparison between 1-, 5-, 10- and 50-zone boiler is presented. Comparison between experiment and simulations for different zone numbers of the boiler model is presented on the plots. The reason of differences between experiment and simulation is explained.
Rocznik
Strony
123--138
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Thermal Processes Department, Institute of Power Engineering, Augustówka 36, 02-981 Warsaw, Poland
autor
  • Thermal Processes Department, Institute of Power Engineering, Augustówka 36, 02-981 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Thermal Processes Department, Institute of Power Engineering, Augustówka 36, 02-981 Warsaw, Poland
Bibliografia
  • [1] BAKALIS D., STAMATIS A.: Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation. Appl. Energ. 103(2013), 607–617.
  • [2] BARTELA L., KOTOWICZ J.: Analysis of operation of the gas turbine in a poligeneration combined cycle. Arch. Thermodyn. 34(2013), 4, 137–159.
  • [3] BUONOMANO A., CALISE F., ACCADIA M., PALOMBO A., VICIDOMINI M.: Hybrid solid oxide fuel cells-gas turbine systems for combined heat and power: A review. Appl. Energ. 156(2015), 32–85.
  • [4] CORIGLIANO O., FRAGIACOMO P.: Technical analysis of hydrogen-rich stream generation through CO2 reforming of biogas by using numerical modeling. Fuel 158(2015), 538–548.
  • [5] DE LORENZO G. FRAGIACOMO P.: Energy analysis of an SOFC system fed by syngas. Energ. Convers. Manage. 93(2015), 175–186.
  • [6] DING J., LI X. CAO, J., SHENG L., YIN L., XU X.: New sensor for gases dissolved in transformer oil based on solid oxide fuel cell. Sensors and Actuators, B: Chemical 202(2014), 232–239.
  • [7] FERNÁNDEZ-SEARA J., SIERES J. et al.: Experimental analysis of a domestic electric hot water storage tank. Part II: Dynamic mode of operation. Appl. Therm. Eng. 27(2007), 1, 137–144.
  • [8] FERNÁNDEZ-SEARA J., UHÍA F.J., PARDIÑAS Á.Á., BASTOS S: Experimental analysis of an on demand external domestic hot water production system using four control strategies. Appl. Energ. 103(2013), 85–96.
  • [9] HEGAZY A.A., DIAB M.: Performance of an improved design for storage-type domestic electrical water-heaters. Appl. Energ. 71(2002), 4, 287–306.
  • [10] HOSSEINZADEH E., ROKNI M., JABBARI M., MORTENSEN H.: Numerical analysis of transport phenomena for designing of ejector in PEM forklift system. Int. J. Hydrogen Energ. 39(2014), 12, 6664–6674.
  • [11] HUANG H., LI J., HE Z., ZENG T., KOBAYASHI N., KUBOTA M.: Performance analysis of a MCFC/MGT hybrid power system bi-fueled by city gas and biogas. Energies 8(2015), 6, 5661–5677.
  • [12] KUPECKI J., JEWULSKI J., BADYDA K.: Comparative study of biogas and DME fed micro-CHP system with solid oxide fuel cell. Appl. Mech. Materials 267(2013), 53–56.
  • [13] LIU A.-G., WENG Y.-W., CHEN L., MA H.-A.: Performance analysis of fuel cell for pressured MCFC/MGT hybrid system. Shanghai Jiaotong Daxue Xuebao/J. Shanghai Jiaotong Univer. 48(2014), 9, 1239–1245.
  • [14] MONDAL S., DE S.: Transcritical CO2 power cycle – effects of regenerative heating using turbine bleed gas at intermediate pressure. Energy 87(2015), 95–103.
  • [15] PIANKO-OPRYCH P., KASILOVA E., JAWORSKI Z.: Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling. Polish J. Chem. Technol. 16(2014), 2, 51–55.
  • [16] POLVERINO P., PIANESE C., SORRENTINO M., MARRA D.: Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis. J. Power Sources 280(2015), 320–338.
  • [17] QIAN J., TAO Z. XIAO, J., JIANG G., LIU W.: Performance improvement of ceriabased solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition. Int. J. Hydrogen Energ. 38(2013, 5, 2407–2412.
  • [18] RABBANI A., ROKNI M.: Modeling and analysis of transport processes and efficiency of combined SOFC and PEMFC systems. Energies 7(2014),9, 5502–5522.
  • [19] RAMANDI M., DINCER I., BERG P.: A transient analysis of three-dimensional heat and mass transfer in a molten carbonate fuel cell at start-up. Int. J. Hydrogen Energy 39(2014), 15, 8034–8047.
  • [20] REXED I., DELLA PIETRA M., MCPHAIL S., LINDBERGH G., LAGERGREN C.: Molten carbonate fuel cells for CO2 separation and segregation by retrofitting existing plants – An analysis of feasible operating windows and first experimental findings. Int. J. Greenhouse Gas Control 35(2015), 120–130.
  • [21] ROSHANDEL R., ASTANEH M., GOLZAR F.: Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases. Front. Energ. 9(2015), 1, 106–114.
  • [22] SPUR R., FIALA D., NEVRALA D., PROBERT D.: Performances of modern domestic hot-water stores. Appl. Energ. 83(2006), 8, 893–910.
  • [23] STEMPIEN J., SUN Q., CHAN S.: Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions. Energy 55(2013), 647–657.
  • [24] SUBOTIĆ V., SCHLUCKNER C., MATHE J., RECHBERGER J., SCHROETTNER H. HOCHENAUER C.: Anode regeneration following carbon depositions in an industrialsized anode supported solid oxide fuel cell operating on synthetic diesel reformate. J. Power Sources 295(2015), 55–66.
  • [25] WEE J.-H.: Carbon dioxide emission reduction using molten carbonate fuel cell systems. Renew. Sust. Energy Rev. 32(2014), 178–191.
  • [26] XU H., DANG Z., BAI B.-F.: Electrochemical performance study of solid oxide fuel cell using lattice Boltzmann method. Energy 67(2014), 575–583.
  • [27] ZHANG X., LIU H., NI M., CHEN J.: Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system. Renew. Energ. 80(2015), 407–414.
  • [28] Aspen HYSYS User Guide, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fad0fd90-f4d3-43ab-b798-abbec26a7567
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.