Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study presents the analysis of the effects occurring at the propagation of electromagnetic waves within an area containing non-ideal, non-homogenous and absorbing dielectric. The analysed models are connected with housing constructions and include single and double-layered walls made of clay hollow bricks. The influence of the size of holes, the contained clay mass percentage and conductivity of brick on the distribution of electric field is presented. Double-layered wall causes more heterogeneity in distribution of electric field and numerous maxima and minima to compare with singlelayered construction. The presented results refer to the electromagnetic field generated by a wireless communication system (Wi-Fi), operating within the standard frequencies (2.4 GHz and 5 GHz). A FDTD method was used to the analysis of electric field distribution. Also in this paper all formulations of difference method (FDTD) is presented. The possibilities of modifying the described method are indicated too. The obtained values of electric field intensity allow to determining the attenuation coefficient for different variants of the walls. Detailed analysis of influence of different types of building construction will make it possible to better understand the wave phenomena and counteract local fading at planning of wireless networks systems.
Czasopismo
Rocznik
Tom
Strony
745--759
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wz.
Twórcy
autor
- Faculty of Electrical Engineering, Białystok University of Technology Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
- [1] Stavrou S., Saunders S.R., Review of constitutive parameters of building material, IEEE Transactions Antennas and Propagation, Twelfth International Conference on (Conf. Publ. no. 491), (ICAP 2003), pp. 211-215 (2003).
- [2] Tan S.Y., Tan Y., Tan H.S., Multipath delay measurements and modeling for interfloor wireless communications, IEEE Transactions on Vehicular Technology, vol. 49, no. 4, pp. 1334-13341 (2000).
- [3] Choroszucho A., The analysis of the diameter of reinforcement, spacing between bars and the electrical parameters of the concrete on the values of the electric field intensity, Przegląd Elektrotechniczny, vol. 90, no. 2, pp. 156-160 (2014).
- [4] Choroszucho A., Butryło B., The numerical analysis of the influence the incidence angle of the plane wave on the values of the electric field intensity inside the models with the complex construction of a wall, Przegląd Elektrotechniczny, vol. 90, no. 12, pp. 21-24 (2014).
- [5] Pinhasi Y., Yahalom A., Petnev S., Propagation of ultra wide-band signals in lossy dispersive media, IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS, pp. 1-10 (2008).
- [6] Taflove A., Hagness S.C., Computational electrodynamics, the finite-difference time-domain method, Boston, Artech House (2005).
- [7] Oskooi A.F., Roundyb D., Ibanescua M. et al., MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method, Computer Physics Communications, vol. 181, no. 3, pp. 687-702 (2010).
- [8] Elsherbeni A. Z., Demir V., The finite-difference time-domain method for electromagnetics with MATLAB Simulations, SciTech Publishing (2009).
- [9] Butryło B., Parallel computations of electromagnetic fields in models with dispersive materials (in Polish), Oficyna Wydawnicza Politechniki Białostockiej (2012).
- [10] Bronsztejn I.N., Siemiendiajew K.A., Mathematics. An encyclopedic guide (in Polish), PWN (2004).
- [11] Comsol Multiphysics user’s guide, Comsol AB (2009).
- [12] Choroszucho A., An analysis of the electromagnetic waves propagation in construction elements with a complex structure in the range of wireless communication (in Polish), Ph.D dissertation, Białystok (2014).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faceb1ae-d53c-431f-adb4-03d82a65d750