Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we analyze the convergence properties of the Schwarz waveform relaxation (SWR) algorithm with Robin transmission conditions (TCs) for a class of heat equations with Riemann-Liouville fractional derivative. The Robin TCs contain a free parameter, which has a significant effect on the convergence rate of the SWR algorithm, and optimizing this parameter is an important step for the convergence analysis of the SWR algorithm. By studying the monotonic properties of the convergence factor obtained by applying the Fourier transform to the error functions, we provide a realiable choice of the Robin parameter in the nonoverlapping case. Numerical results are provided, which show that the analyzed Robin parameter results in satisfactory convergence rate.
Wydawca
Czasopismo
Rocznik
Tom
Strony
231--240
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
- School of Science, Sichuan University of Science and Technology, Zigong 643000, Sichuan, P. R. China
autor
- Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, Sichuan, P. R. China
Bibliografia
- [1] Bouchaud J, Georges A. Anomalous diffusion in disordered media: Statistical mechanisms: models and physical applications. Physics reports. 1990; 195 (4): 127-293. doi: 10.1016/0370-1573(90)90099-N.
- [2] Bennequin D, Gander MJ, Halpern L. A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Mathematics of Computation, 2009; 78 (265): 185-223. doi: 10.1090/S0025-5718-08-02145-5.
- [3] Henry BI, Langlands TAM, Wearne SL. Fractional cable models for spiny neuronal dendrites. Physical review letters, 2008; 100 (12): 128103. https://doi.org/10.1103/PhysRevLett.100.128103.
- [4] Gander MJ, Stuart AM. Space-time continuous analysis of waveform relaxation for the heat equation. SIAM Journal of Scientific Computing, 1998; 19 (6): 2014-2031. doi: 10.1137/S1064827596305337.
- [5] Giladi E, Keller, HB. Space-time domain decomposition for parabolic problems. Numerische Mathematik, 2002; 93 (2): 279-313. doi: 10.1007/s002110100345.
- [6] Gander MJ, Halpern L. Optimized Schwarz waveform relaxation for advection reaction diffusion problems. SIAM Journal of Numerical Analysis, 2007; 45 (2): 666-697. doi: 10.1137/050642137.
- [7] Jafari H, Tajadodi H, Johnston SJ. A decomposition method for solving diffusion equations via local fractional time derivative. Thermal Science, 2015; 19: 123-129. doi: 10.2298/TSCI15S1S23J.
- [8] Li XJ, Xu CJ. A space-time spectral method for the time fractional diffusion equation. SIAM Journal on Numerical Analysis, 2009; 47 (3): 2108-2131. doi: 10.1137/080718942.
- [9] Lenzi EK, Mendes RS, Fa KS, Malacame LC. Anomalous diffusion: fractional Fokker-Planck equation and its solutions. Journal of Mathematical Physics. 2003; 44: 2179-2185. http://EconPapers.repec.org/RePEc:eee:phsmap:v:319:y:2003:i:c:p:245-252.
- [10] Podlubny I. Fractional differential equations. Academic Press, New York, 1999. ISBN: 0125588402.
- [11] Sheng-Ping YAN. Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer. Thermal Science, 2015; 19 (1): 131-135. doi: 10.2298/TSCI141010063Y.
- [12] Weeks ER. Experimental studies of anomalous diffusion, blocking phenomena, and two-dimensional turbulence. Ph.D. thesis, University of Texas at Austin, 1997.
- [13] Wu SL, Huang TZ. Schwarz waveform relaxation for a neutral functional partial differential equation model of lossless coupled transmission lines. SIAM Journal on Scientific Computing, 2013; 35 (2): 1161-1191. doi: 10.1137/110860975.
- [14] Yang XJ, Machado JAT, Srivastava HM. A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach. Applied Mathematics and Computation, 2016; 274: 143-151. http://dx.doi.org/10.1016/j.amc.2015.10.072.
- [15] Yang XJ, Baleanu D, Srivastava HM. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 2015; 47: 54-60. doi: 10.1016/j.am1.2015.02.024.
- [16] Zeng F, Li C, Liu F, Turner I. Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM Journal on Scientific Computing, 2015; 37 (1): 55-78. doi: 10.1137/14096390X.
- [17] Zhang Y, Srivastava HM, Baleanu MC. Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow. Advances in Mechanical Engineering, 2015; 7 (10): 1-5. doi: 10.1177/1687814015608567.
- [18] Zhang Y, Cattani C, Yang XJ. Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains. Entropy, 2015; 17 (10): 6753-6764. doi: 10.3390/e17106753.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-facdc220-9281-4515-8d37-22fe48733b45