PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Taxonomy of non-destructive field tests of bridge materials and structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bridges generally are susceptible to deterioration, thus in such a situation precise informa-tion on characteristics and condition of their materials and structural systems based on results of diagnostic procedures is crucial for safety of the structures and users of the transportation infrastructure and also for efficient management of bridge asset. The main purpose of this work is to propose an approach to integrated classification of contemporary non-destructive field tests as a part of general strategy of diagnostic investigations of bridge materials and structures. Analysis of the most frequent degradation stimulators and mechanisms as well as main classes of bridge defects form a background for presented classification of diagnostic tests. The classification includes load-independent and load-dependent testing strategies and takes into account type of tested material and diagnostic goals: geometry identification, assessment of materials characteristics and quality, detec- tion of defects and degradation processes as well as monitoring of bridge structure response to loads and environmental influences.
Rocznik
Strony
1353--1367
Opis fizyczny
BIbliogr. 71 poz., fot., rys., tab.
Twórcy
autor
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
Bibliografia
  • [1] SNCF, Direction de l'equipement, departement des ouvrages d'art, in: Cotation Des Ouvrages d'Art, Catalogue des Avaries, Paris, France, 1995.
  • [2] Swedish National Road Administration, Bridge Inspection Manual. Publication No. 1996:036(E), 1996.
  • [3] M.K. Soderqvist, M. Veijola, The Finnish Bridge Management System, Struct. Eng. Int. 8 (4) (1998) 315–319. , http://dx.doi. org/10.2749/101686698780488910.
  • [4] H. Hawk, E.P. Small, The BRIDGIT Bridge Management System, Struct. Eng. Int. 8 (4) (1998) 309–314. , http://dx.doi. org/10.2749/101686698780488712.
  • [5] P.D. Thompson, E.P. Small, M. Johnson, A.R. Marshall, The PONTIS Bridge Management System, Struct. Eng. Int. 8 (4) (1998) 303–308. , http://dx.doi.org/10.2749/101686698780488758.
  • [6] Federal Highway Administration, Reliability of Visual Inspection for Highway Bridges, FHWA–RD–01–020, McLean, 2001.
  • [7] J. Lauridsen, B. Lassen, The Danish Bridge Management System DANBRO, in: Management of Highway Structures, Thomas Telford, London, 1999, , pp. 61–70ISBN 0-7277-2775-3.
  • [8] H. Ludescher, R. Hajdin, Distinctive features of the Swiss road structures management system, In Transportation Research Circular, No. 498; 2000, in: Proceedings of the 8th International Bridge Management Conference, Denver, Colorado, USA, 1999, pp. F–1/1–17.
  • [9] J. Bien, Modelling of Bridge Structures During Operation Process (in Polish), Publishing House of the Wroclaw University of Technology, Wroclaw, Poland, 2002, ISBN 83- 7085-652-7.
  • [10] J. Bien, M. Kuzawa, M. Gladysz–Bien, T. Kaminski, Quality control of road bridges in Poland, in: Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2016, Foz Do Iguaçu, Brasil, (2016) 971– 978, ISBN 978-1-138-73045-8.
  • [11] UIC code 778–4 R, Defects in Railway Bridges and Procedures for Maintenance 2009.
  • [12] D.N. Farhey, R. Naghavi, A. Levi, et al., Deterioration assessment and rehabilitation design of existing steel bridge, J. Bridge Eng. 5 (1) (2000) 39–48. , http://dx.doi.org/ 10.1061/(ASCE)1084-0702(1997)2:3(116).
  • [13] M.P. Enright, D.M. Frangopol, Survey and evaluation of damaged concrete bridges, J. Bridge Eng. 1 (2000) 31–38. , http://dx.doi.org/10.1061/(ASCE)1084-0702(2000)5:1(31).
  • [14] R. Helmerich, E. Niederleithinger, Ch. Trela, J. Bien, T. Kaminski, G. Bernardini, Multi–tool inspection and numerical analysis of an old masonry arch bridge, Struct. Infrastruct. Eng. 8 (1) (2012) 27–39. , http://dx.doi.org/10.1080/ 15732471003645666.
  • [15] J. Bien, J. Krzyzanowski, P. Rawa, J. Zwolski, Dynamic load tests in bridge management, Arch. Civ. Mech. Eng. 4 (2) (2004) 63–78.
  • [16] J. Bien, M. Kuzawa, T. Kaminski, Validation of numerical models of concrete box bridges based on load test results, Arch. Civ. Mech. Eng. 15 (4) (2015) 1046–1060. , http://dx.doi. org/10.1016/j.acme.2015.05.007.
  • [17] J. Zwolski, J. Bien, Modal analysis of bridge structures by means of Forced Vibration Tests, J. Civ. Eng. Manag. 17 (4) (2011), http://dx.doi.org/10.3846/13923730.2011.632489.
  • [18] E. Watanabe, H. Furuta, T. Yamaguchi, M. Kano, On longevity and monitoring technologies of bridges – a survey study by Japanese Society of Steel Construction, in: Proceedings of the 5th International Conference on Bridge Maintenance; Safety and Management, Philadelphia, USA, (2010) 64–71, ISBN 978- 0-415-87786-2.
  • [19] J. Bien, T. Kaminski, M. Kuzawa, Monitoring in management of roadway bridges, in: Proceedings of the 9th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2018, Melbourne, Australia, 9–13 July 2018, (Powers, Frangopol, Al–Mahaidi, Caprani, Eds), Taylor & Francis Group, London, (2018) 1839–1844, ISBN 978-1-138-73045-8.
  • [20] V.M. Karbhari, F. Ansari, Structural Health Monitoring of Civil Infrastructure Systems, CRC Press, 2009 ISBN 978-1-84569- 392-3.
  • [21] D. Balageas, C.-P. Fritzen, A. Güemes, Structural Health Monitoring, John Wiley & Sons, 2010 ISBN 978-1905209019.
  • [22] H. Wenzel, Health Monitoring of Bridges, J. Wiley & Sons Ltd., 2009 ISBN 978-0470031735.
  • [23] You Lin Xu, Yong Xia, Structural Health Monitoring of Long– Span Suspension Bridges, CRC Press, 2011 ISBN 9781138075634.
  • [24] J. Bien, Defects and Diagnostics of Bridge Structures (in Polish), Transport and Communication Publishers, Warsaw, Poland, 2010, ISBN 978-83-206-1791-7.
  • [25] Smart Structures, Integrated Monitoring Systems for Durability Assessment of Concrete Structures, Project Report, 2002.
  • [26] I. Olofsson, L. Elfgren, et al., Assessment of European Railway Bridges for Future Traffic Demands and Longer Lives – EC project Sustainable Bridges’’, J. Struct. Infrastruct. Eng. 1 (2) (2005) 93–100. , http://dx.doi.org/10.1080/ 15732470412331289396.
  • [27] J. Bien, M. Gladysz, Sustainable Bridges – research project of European community, Transp. Res. Rec. 11 (5) (2005) 501–508. , http://dx.doi.org/10.3141/trr.11s.m34567u8t5q3w163.
  • [28] Guideline for the Assessment of Existing Structures, Final Report, Research Project ‘‘Structural Assessment, Monitoring and Control – SAMCO’’, 2006.
  • [29] J. Matos, An overview of the European situation on quality control of existing bridges – COST Action TU1406, Proceedings of the 40th IABSE Symposium, NANTES 2018, 19–21 September 2018, Nantes, France, ISBN 978-1-5108-7385-8.
  • [30] J. Hola, J. Bien, L. Sadowski, K. Schabowicz, Non–destructive and semi–destructive diagnostics of concrete structures in assessment of their durability, Bull. Polish Acad. Sci. Tech. Sci. 63 (1) (2015) 87–96. , http://dx.doi.org/10.1515/bpasts- 2015-0010.
  • [31] Omar Tarek, L. Nehdi Moncef, Condition assessment of reinforced concrete bridges: current practice and research challenges, Infrastructures 3 (36) (2018), http://dx.doi.org/ 10.3390/infrastructures3030036.
  • [32] D.E. Bray, D. McBride, Nondestructive Testing Techniques, John Wiley & Sons, New York, 1992, ISBN 0471525138 9780471525134.
  • [33] Ch.J. Hellier, Handbook of Nondestructive Evaluation, McGraw-Hill, 2001 ISBN: 007139947X.
  • [34] B. Raj, T. Jayakumar, M. Thavasimuthu, Practical Non– destructive Testing, Woodhead Publishing Limited, 2002 ISBN: 1-85573-600-4.
  • [35] V.M. Malhorta, N.J. Carino, CRC Handbook on Nondestructive Testing of Concrete, CRC Press, 2003 ISBN 0-8031-2099-0.
  • [36] P.E. Mix, Introduction to Nondestructive Testing: a Training Guide, John Wiley & Sons, Inc., 2005 ISBN 0471420298.
  • [37] J. Hola, K. Schabowicz, State–of–the–art non–destructive methods for diagnostic testing of building structures – anticipated development trends, Arch. Civ. Mech. Eng. 10 (3) (2010), http://dx.doi.org/10.1016/S1644-9665(12)60133-2.
  • [38] K.S. Ayswarya, A.M. Johnson, D. Prasad, D.R. Krishnan, Evaluation of bridge performance using non–destructive testing – a review, Int. Adv. Res. J. Sci. Eng. Technol. 5 (1) (2016), http://dx.doi.org/10.17148/IARJSET.
  • [39] Sardar Kashif Ur Rehman, Zainah Ibrahim, Shazim Ali Memonb, Mohammed Jameel, Nondestructive test methods for concrete bridges: a review, Constr. Build. Mater. 107 (2016) 58–86. , http://dx.doi.org/10.1016/j.conbuildmat.2015.12.011.
  • [40] Z. Orbán, M. Gutermann, Assessment of masonry arch railway bridges using non–destructive in–situ testing methods, Eng. Struct. 31 (2009) 2287–2298. , http://dx.doi.org/ 10.1016/j.engstruct.2009.04.008.
  • [41] L. Cartz, Nondestructive testing. Radiography. Ultrasonics. Liquid Penetrant. Magnetic Particle. Eddy Current, ASM International, 1999 ISBN 0-87170-517-6.
  • [42] M. Sansalone, Impact–echo: the complete story, ACI Struct. J. 94 (6) (1997), http://dx.doi.org/10.14359/9737.
  • [43] H. Azari, S. Nazarian, D. Yuan, Assessing sensitivity of impact echo and ultrasonic surface waves methods for nondestructive evaluation of concrete structures, Constr. Build. Mater. 71 (2014) 384–391. , http://dx.doi.org/10.1016/j. conbuildmat.2014.08.056.
  • [44] K. Schabowicz, Ultrasonic tomography – the latest non– destructive technique for testing concrete members – description; test methodology; application example, Arch. Civ. Mech. Eng. 14 (2) (2014) 295–303. , http://dx.doi.org/ 10.1016/j.acme.2013.10.006.
  • [45] P. Shokouhi, J. Wolf, H. Wiggenhauser, Detection of delamination in concrete bridge decks by joint amplitude and phase analysis of ultrasonic array measurements, J. Bridge Eng 19 (3) (2013), http://dx.doi.org/10.1061/(ASCE) BE.1943-5592.0000513.
  • [46] D.K. Hsu, K.-H. lm, I.-Y. Yang, Applications of electromagnetic acoustic transducers in the NDE of non– conducting composite materials, Ksme Int. J. 13 (5) (1999) 403–413. , http://dx.doi.org/10.1007/BF02939328.
  • [47] M. Alsharqawi, T. Zayed, S.A. Dabous, Common practices in assessing conditions of concrete bridges, MATEC Web Conf. 120 (2017) 02016, http://dx.doi.org/10.1051/matecconf/ 20171200201.
  • [48] J.–F. Lataste, Electrical resistivity measurement, in: Non– Destructive Assessment of Concrete Structures, Springer, 2012, pp. 77–85 ISBN 9400727356.
  • [49] C. Andrade, R. D'andréa, A. Castillo, M. Castellote, The use of electrical resistivity as NDT method for the specification of the durability of reinforced concrete, in: Proceedings of the Non-Destructive Testing in Civil Engineering, NDTCE'09, Nantes, France, June 30th–July 3rd, 2009.
  • [50] British Standards Institution & European Norms, Non Destructive Testing. Eddy Current Examination. Equipment Characteristics and Verification. Instrument Characteristics and Verification, 2003 BS EN 13860–1.
  • [51] C.K. Low, B.S. Wong, Defect evaluation using the alternating current field measurement technique, Non–Destruct. Testing Condition Monitor. 46 (10) (2004) 598–605.
  • [52] N. Song, Y. Haga, T. Goda, K. Sakai, T. Kiwa, K. Tsukada, Detecting internal defects of a steel plate by using low– frequency magnetic flux leakage method, Proceedings of the Sensors Applications Symposium, SAS (2017) 1–6.
  • [53] J. Blitz, Electrical and Magnetic Methods of Non–destructive Testing, Springer Science & Business Media, 2012 ISBN 978- 94-011-5818-3.
  • [54] L. Topczewski, F.M. Fernandes, P.J.S. Cruz, P.B. Laurenco, Practical implications of GPR investigation using 3D data reconstruction and transmission tomography, J. Build. Apprais. 3 (1) (2007) 59–76. , http://dx.doi.org/10.1057/ palgrave.jba.2950060.
  • [55] A. Benedetto, L. Pajewski, Civil Engineering Applications of Ground Penetrating Radar, Springer International Publishing, 2015 ISBN 978-3-319-04813-0.
  • [56] J. Lachowicz, M. Rucka, 3-D finite-difference time-domain modelling of ground penetrating radar for identification of rebars in complex reinforced concrete structures, Arch. Civ. Mech. Eng. 18 (4) (2018) 1228–1240. , http://dx.doi.org/10.1016/ j.acme.2018.01.010.
  • [57] T.N. Bittencourt, D.M. Frangopol, A. Beck, Maintenance Monitoring Safety Risk and Resilience of Bridges and Bridge Networks, CRC Press, 2016 ISBN 9781138028517.
  • [58] Y. Kwan, Laser Scanning, Theory and Applications, Scitus Academics LLC, 2016 , ISBN 1681174995.
  • [59] M. Kaloop, H. Li, Monitoring of bridge deformation using GPS technique, Ksce J. Civ. Eng. 13 (2009) 423–431. , http://dx.doi. org/10.1007/s12205-009-0423-y.
  • [60] M. Clark, D. McCann, M. Forde, Application of infrared thermography to the non–destructive testing of concrete and masonry bridges, NDT E Int. 36 (4) (2003) 265–275. , http:// dx.doi.org/10.1016/S0963-8695(02)00060-9.
  • [61] K. Herrmann, Hardness Testing: Principles and Applications, ASM International, 2011 ISBN 978-1-61503-832-9.
  • [62] X.E. Gros, NDT Data Fusion, Butterworth–Heinemann, 1997 ISBN: 9780080524047.
  • [63] M.L. Wang, J.P. Lynch, H. Sohn, Sensor technologies for civil infrastructures, Sensing Hardware and Data Collection Methods for Performance Assessment, 1, Elsevier, 2014 ISBN: 9780857099136.
  • [64] Ch.J. Wall, R.E. Christenson, A.–M.H. McDonnell, A.A. Jamalipour, Non–intrusive bridge weigh–in–motion system for a single span steel girder bridge using only strain measurements, in: Connecticut Department of Transportation, Report No. CT–2251–3–09, 2009.
  • [65] S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz, Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics, a Literature Review, Los Alamos National Laboratory, LA–13070–MS, 1996.
  • [66] N.M.M. Maia, J.M.M. Silva, E.A.M. Almas, R.P.C. Sampaio, Damage detection in structures: from mode shape to frequency response function methods, Mech. Syst. Signal Process. 3 (17) (2003), http://dx.doi.org/10.1006/ mssp.2002.1506.
  • [67] H. Wenzel, D. Piechler, Ambient Vibration Monitoring, J. Wiley & Sons Ltd, 2005.
  • [68] A. Cunha, E. Caetano, F. Magalhaes, Output-only dynamic testing of bridges and special structure, Struct. Concr. 8 (2) (2007) 67–85. , http://dx.doi.org/10.1680/stco.2007.8.2.67.
  • [69] S.S. Law, X.Q. Zhu, Damage Models and Algorithms for Assessment of Structures Under Operating Conditions, CRC Press, 2009 ISBN 9780415421959.
  • [70] M. Kuzawa, T. Kaminski, J. Bien, Fatigue assessment procedure for old riveted road bridges, Arch. Civ. Mech. Eng. 18 (4) (2018) 1259–1274. , http://dx.doi.org/10.1016/j. acme.2018.03.005.
  • [71] H.B. Mitchell, Multi-sensor Data Fusion – an Introduction, Springer-Verlag, Berlin, 2007, ISBN 978-3-540-71463-7.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fac9c9b7-d4fb-41e7-a284-ed70138f2901
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.