PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of deposition technology and ACmeasurement of copper ultrathin layers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Opracowanie technologii osadzania i pomiarów zmiennoprądowych ultracienkich warstw miedzi
Języki publikacji
EN
Abstrakty
EN
In this paper, the transport properties of discontinuous 4 nm copper layers obtained by dual-source non-reactive magnetron sputtering in the presence of argon are presented. The value of resistance and capacitance of the current parallel to the plane of these layers can be adjusted independently by changing the nominal thickness of the metallization. The influence of frequency on the conductivity of the obtained structures in the range from 4 Hz to 8 MHz was studied. Additionally, in order to compare the non-oxidized and oxidized layers, some of them were heated at 500°C. Based on the results obtained, the mechanism of electric charge transfer was determined, the knowledge of which is essential for planning further experiments based on this sputtering method and potential selection of future application of the structures. Statistical measurements at room temperature will serve as a reference for the conductivity and resistivity values obtained by mathematical calculations from measurements of resistance, capacitance, phase shift angle, and dielectric loss tangent as a function of temperature from 20 K to 375 K, which are expected in further studies on the obtained structures. The work is an introduction to the technology of obtaining multi-layer metal-dielectric structures
PL
W niniejszej pracy przedstawione zostały właściwości transportowe nieciągłych 4 nm warstw miedzi otrzymanych metodą dwuźródłowego niereaktywnego rozpylania magnetronowego w obecności argonu. Wartość rezystancji i pojemności prądu równoległego do płaszczyzny tych warstw można dostrajać niezależnie poprzez zmianę nominalnej grubości metalizacji. Przebadano wpływ częstotliwości na konduktywność otrzymanych struktur w zakresie od 4 Hz do 8 MHz. Dodatkowo, w celu porównania nieutlenionych i utlenionych warstw niektóre z nich zostały wygrzane w temperaturze 500°C. Na podstawie otrzymanych wyników określono mechanizm przenoszenia ładunków elektrycznych, którego znajomość jest niezbędna do planowania kolejnych eksperymentów bazujących na tej metodzie napylania oraz potencjalnym doborze przyszłego zastosowania struktur. Statystyczne pomiary w temperaturze pokojowej posłużą za punkt odniesienia dla wartości konduktywności i rezystywności otrzymanych na drodze obliczeń matematycznych z pomiarów rezystancji, pojemności, kąta przesunięcia fazowego oraz tangensa strat dielektrycznych w funkcji temperatury od 20 K do 375 K, które przewidywane są w dalszej części badań nad otrzymanymi strukturami. Praca stanowi wstęp do technologii otrzymywania wielowarstwowych struktur typu metal-dielektryk.
Rocznik
Strony
36--39
Opis fizyczny
Bibliogr. 27 poz., tab, rys., wykr.
Twórcy
  • Lublin University of Technology, Department of Electrical Devices and High Voltage Technology, Lublin, Poland
  • University of Life Sciences in Lublin, Department of Technology Fundamentals, Lublin, Poland
  • Lublin University of Technology, Department of Electronic and Information Technology, Lublin, Poland
  • Lublin University of Technology, Department of Electrical Devices and High Voltage Technology, Lublin, Poland
Bibliografia
  • [1] Beck R.: Technologia krzemowa. PWN, Warszawa, 1991.
  • [2] Biegański P., Dobierzewska-Mozrzymas E.: Electrical properties of discontinuous copper films. International Journal of Electronics 70, 1991, 499–504, [http://doi.org/10.1080/00207219108921300].
  • [3] Cemin F., Lundin D.: Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering. Journal of Vacuum Science & Technology A 34(5), 2016, 051506-1–051506-7 [http://doi.org/10.1116/1.4959555].
  • [4] Chakarvarki S. K.: Track-etch membranes enabled nano-/microtechnology: A review. Radiation Measurements 44(9–10), 2009, 1085–1092, [http://doi.org/10.1016/j.radmeas.2009.10.028].
  • [5] Chebakova K. A., Dzidziguri E. L. et al.: Open AccessArticle X-ray Fluorescence Spectroscopy Features of Micro- and Nanoscale Copper and Nickel Particle Compositions, Nanomaterials 11(9), 2021, 2388, [http://doi.org/10.3390/nano11092388].
  • [6] Dingle R. B.: The electrical conducticity of thin wires. Proceeding of the Royal Society A Mathematical, Physical and Engineering Sciences, 1950, [http://doi.org/10.1098/rspa.1950.0077].
  • [7] Fedotov A., Mazanik A., Svito I., Saad A., Fedotova V., Czarnacka K., Kołtunowicz T. K.: Mechanism of Carrier Transport in Cux(SiO2)1-x Nanocomposites Manufactured by Ion-Beam Sputtering with Ar Ions, Acta Physica Polonica A 128, 2015, [http://doi.org/10.12693/APhysPolA.128.883].
  • [8] Giroire B., Ali Ahmad M., Aubert G., Teule-Gay L., Michau D., Watkins J. J., Aymonier C., Poulon-Quintin A.: A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques, Thin Solid Films 643, 2017, 53–59, [http://doi.org/10.1016/j.tsf.2017.09.002].
  • [9] Grimmet G.: Percolation, 2nd ed. Springer-Verlag, Berlin 1999, [http://doi.org/10.1007/978-3-662-03981-6].
  • [10] Hill R. M.: Electrical conduction in discontinuous metal films. Contemporary Physics 10, 1969, 221–240, [http://doi.org/10.1080/00107516908224594].
  • [11] Imantalab O., Fattah-alhosseini A., Keshavarz M. K., Mazaheri Y.: Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper. Journal of Materials Engineering and Performance 25, 2016, 697–703, [http://doi.org/10.1007/s11665-015-1836-z].
  • [12] Kah-Toong Chan, Teck-Yong Tou, Bee-San Teo: Thickness dependence of the structural and electrical properties of copper films deposited by dc magnetron sputtering technique. Microelectronics Journal 37(7), 2006, 608–612, [http://doi.org/10.1016/j.mejo.2005.09.016].
  • [13] Kołtunowicz T. N., Żukowski P., Czarnacka K., Bondariev V., Boiko O., Scito I. A., Fedotov A. K.: Dielectric properties of nanocomposite (Cu)x(SiO2)(100−x) produced by ion-beam sputtering. Journal of Alloys and Compounds 652, 2015, 444–449, [http://doi.org/10.1016/j.jallcom.2015.08.240].
  • [14] Lacy F.: Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors. Nanoscale Research Letters 6, 2011, 1–14, [http://doi.org/10.1186/1556-276X-6-636].
  • [15] Lim J. W., Isshiki M.: Electrical resistivity of Cu films deposited by ion beam deposition: Effects of grain size, impurities, and morphological defect. Journal of Applied Physics 99, 2006, 094909-1–094909-7, [http://doi.org/10.1063/1.2194247].
  • [16] Lin Zhang, Xu Lu, Xinyu Zhang, Li Jin, Zhou Xu, Z.-Y. Cheng: All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Composites Science and Technology 167, 2018, 285–293, [http://doi.org/10.1016/j.compscitech.2018.08.017].
  • [17] Liu H.-D., Zhao Y.-P., Ramanath G., Murarka S. P., Wang G.-C.: Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films. Thin Solid Films 384(1), 2011, 151–156, [http://doi.org/10.1016/S0040-6090(00)01818-6].
  • [18] Mech K., Kowalik R., Żabiński P.: Cu thin films deposited by DC magnetron sputtering for contact surfaces on electronic components. Archives of Metallurgy and Materials 56(4), 2011, 903–908, [http://doi.org/10.2478/v10172-011-0099-4].
  • [19] Mott N. F., Davies E. A.: Electronic process in non-crystalline materials. Claredon Press, Oxford 1979.
  • [20] Poklonskii N. A., Gorbachuk N. I.: Fundamentals of impedance Spectroscopy of composites. Belarusian State University, Minsk 2005.
  • [21] Svito I., Fedotov A. K., Kołtunowicz T. N., Żukowski P., Kalinin Y., Sitnikov A., Czarnacka K., Saad A.: Hopping of electron transport in granular Cux(SiO2)1–x nanocomposite films deposited by ion-beam sputtering. Journal of Alloys and Compounds 615, 2014, S371–S374, [http://doi.org/10.1016/j.jallcom.2014.01.136].
  • [22] Yang Yu.: Deposited mono-component Cu metallic glass: a molecular dynamics study Materials Today Communications 26, 2021, 102083-1–102083-5, [http://doi.org/10.1016/j.mtcomm.2021.102083].
  • [23] Yarimbiyik A. E., Schafft H. A., Allen R. A., Vaudin M. D., Zaghloul M. E.: Experimental and simulation studies of resistivity in nanoscale copper films, Microelectronics Reliability 42(2), 2009, 127–134, [http://doi.org/10.1016/j.microrel.2008.11.003].
  • [24] Zhigal'skii, G. P., Jones B. K.: The physical properties of thin metal films. Vol. 13. CRC Press, London 2003.
  • [25] Żukowski P., Kołtunowicz T. K., Partyka J., Węgierek P.: Dielectric properties and model of hopping conductivity of GaAs irradiated by H + ions, Vacuum 81(10), 2007, 1137–1140, [http://doi.org/10.1016/j.vacuum.2007.01.070].
  • [26] Żukowski P., Kołtunowicz T. N., Boiko O., Bondariev V., Czarnacka K., Fedotova J. A., Fedotov A. K., Svito I. A.: Impedance model of metal-dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)x(PZT)(100−x), Vacuum 120, 2015, 37–43, [http://doi.org/10.1016/j.vacuum.2015.04.035].
  • [27] Żukowski P., Kołtunowicz T. N., Partyka J., Fedotova Yu. A., Larkin A. V.: Hopping conductivity of metal-dielectric nanocomposites produced by means of magnetron sputtering with the application of oxygen and argon ions. Vacuum 83(3), 2009, S280–S283, [http://doi.org/10.1016/j.vacuum.2009.01.082].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fac28f0c-903b-4bbf-8564-cf00fc2150c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.