PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Progression of clock DBD changes over time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Day-boundary discontinuity (DBD) is an effect present in precise GNSS satellite orbit and clock products originating from the method used for orbit and clock determination. The non-Gaussian measurement noise and data processing in 24 h batches are responsible for DBDs. In the case of the clock product, DBD is a time jump in the boundary epochs of two adjacent batches of processed data and its magnitude might reach a couple of ns. This article presents the four GNSS (Global Navigation Satellite System) systems DBD analysis in terms of change over an 8 year period. For each of 118 satellites available in this period, the yearly value of DBD was subject to analysis including standard deviation and frequency of outliers. Results show that the smallest DBDs appear in the GPS system, the biggest - for the BeiDou space segment. Moreover, the phenomenon of changes in DBDs over time is clearly seen at the beginning of the analysed period when the magnitude and number of the DBDs were larger than for current, newest clock products.
Słowa kluczowe
EN
Rocznik
Strony
499--505
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Department of Integrated Geodesy and Cartography, AGH University, Mickiewicza Av. 30, 30-059 Krakow, Poland
autor
  • Institute of Geodesy and Geoinformatics, University of Latvia, Jelgavas St. 3, LV-1004, Riga, Latvia
autor
  • Department of Integrated Geodesy and Cartography, AGH University, Mickiewicza Av. 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Paziewski, J., Sieradzki, R., & Baryla, R. (2018). Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Measurement Science and Technology, 29(3), 035002. https://doi.org/10.1088/1361-6501/aa9ec2
  • [2] Stateczny, A., Specht, C., Specht, M., Brčić, D., Jugović, A., Widźgowski, S., Wiśniewska, M., & Lewicka, O. (2021). Study on the positioning accuracy of GNSS/INS systems supported by DGPS and RTK receivers for hydrographic surveys. Energies, 14(21), 7413. https://doi.org/10.3390/en14217413
  • [3] Siejka, Z. (2018). Validation of the accuracy and convergence time of real time kinematic results using a single Galileo navigation system. Sensors, 18(8), 2412. https://doi.org/10.3390/s18082412
  • [4] Buda, A. S., Nistor, S., & Suba, N. S. (2020). The impact of tropospheric mapping function on ppp determination for one-month period, Acta Geodyn. Geomater, 17(2), 237-252. https://doi.org/10.13168/AGG.2020.0018
  • [5] Lewińska, P., Głowacki, O., Moskalik, M., & Smith, W. A. (2021). Evaluation of structure-from-motion for analysis of small-scale glacier dynamics. Measurement, 168, 108327. https://doi.org/10.1016/j.measurement.2020.108327
  • [6] Montenbruck, O., Steigenberger, P., Khachikyan, R., Weber, G., Langley, R. B., Mervart, L., Hugentobler, U. (2014). IGS-MGEX Preparing the Ground for Multi-COnstellation GNSS Science. InsideG-NSS, (9), 42-49. http://www.insidegnss.com/auto/janfeb14-MONTENBRUCK.pdf
  • [7] Maciuk, K., & Lewińska, P. (2019). High-rate monitoring of satellite clocks using two methods of averaging time. Remote Sensing, 11(23), 2754. https://doi.org/10.3390/rs11232754
  • [8] Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod, K., & Schaer, S. (2017). The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) - Achievements, prospects and challenges. Advances in Space Research, 59(7), 1671-1697. https://doi.org/10.1016/j.asr.2017.01.011
  • [9] Ai, Q., Maciuk, K., Lewinska, P., & Borowski, L. (2021). Characteristics of onefold clocks of GPS, Galileo, BeiDou and GLONASS systems. Sensors, 21(7), 2396. https://doi.org/10.3390/s21072396
  • [10] Nistor, S., & Buda, A. S. (2016). The Influence of Zenith Tropospheric Delay on PPP-RTK. Journal of Applied Engineering Sciences, 19(1). https://doi.org/10.1515/jaes-2016-0010
  • [11] Specht, M. (2021). Determination of navigation system positioning accuracy using the reliability method based on real measurements. Remote Sensing, 13(21), 4424. https://doi.org/10.3390/rs13214424
  • [12] Ray, J., & Senior, K. (2003). IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation. Metrologia, 40(3), S270. https://doi.org/10.1088/0026-1394/40/4/501
  • [13] Yao, J., & Levine, J. (2013, December). A new algorithm to eliminate GPS carrier-phase time transfer boundary discontinuity. In Proceedings of the 45th Annual Precise Time and Time Interval Systems and Applications Meeting (pp. 292-303).
  • [14] Rovira-Garcia, A., Juan, J. M., Sanz, J., González-Casado, G., Ventura-Traveset, J., Cacciapuoti, L., & Schoenemann, E. (2021). Removing day-boundary discontinuities on GNSS clock estimates: methodology and results. GPS Solutions, 25(2), 35. https://doi.org/10.1007/s10291-021-01085-3
  • [15] Rovira-Garcia, A., Juan, J. M., Sanz, J., González-Casado, G., Ventura-Traveset, J., Cacciapuoti, L., & Schoenemann, E. (2021). A multi-frequency method to improve the long-term estimation of GNSS clock corrections and phase biases. NAVIGATION: Journal of the Institute of Navigation, 68(4), 815-828. https://doi.org/10.1002/navi.453
  • [16] Qing, Y., Lou, Y., Dai, X., & Liu, Y. (2017). Benefits of satellite clock modeling in BDS and Galileo orbit determination. Advances in Space Research, 60(12), 2550-2560. https://doi.org/10.1016/j.asr.2017.03.040
  • [17] Zhang, X., Guo, J., Hu, Y., Zhao, D., & He, Z. (2020). Research of eliminating the day-boundary discontinuities in GNSS carrier phase time transfer through network processing. Sensors, 20(9), 2622. https://doi.org/10.3390/s20092622
  • [18] Dach, R., Schaer, S., Arnold, D., Brockmann, E., Kalarus, M. S., Prange, L., Stebler, P., Villiger, A., & Jäggi, A. (2020). CODE final product series for the IGS [Data set]. Astronomical Institute, University of Bern. https://doi.org/10.7892/boris.75876.4
  • [19] Prange, L., Villiger, A., Sidorov, D., Schaer, S., Beutler, G., Dach, R., & Jäggi, A. (2020). Overview of CODE’s MGEX solution with the focus on Galileo. Advances in Space Research, 66(12), 2786-2798. https://doi.org/10.1016/j.asr.2020.04.038
  • [20] Huang, G., Cui, B., Zhang, Q., Li, P., & Xie, W. (2019). Switching and performance variations of on-orbit BDS satellite clocks. Advances in Space Research, 63(5), 1681-1696. https://doi.org/10.1016/j.asr.2018.10.047
Uwagi
1. This work was funded by the National Science Centre as part of MINIATURA 5 (Application No. 2021/05/X/ST10/00058), by the Initiative for Excellence-Research University grant at AGH University of Science and Technology and under scientific research 16.16.150.545. Authors contribution: KM 45%, IV 10%, JK 45%.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fac1c3f2-19c2-4e48-818b-c7aaff9f8936
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.