Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Unmanned Aerial Vehicle (UAV) frequently encounter various external disturbances during flight. After experiencing such disturbances, the UAV’s power supply must quickly respond and maintain stable output. To address this problem, this paper proposes an improved active disturbance rejection control (IADRC) scheme combined with peak current mode control (PCMC) based on a six-phase interleaved parallel synchronous buck converter. Modal analysis was conducted on the synchronous buck converter, and small-signal modeling was performed under current control mode to analyze closed-loop stability. The dynamic response speed was improved by utilizing a peak current inner loop, enabling precise current sharing. The system’s disturbance rejection capability was enhanced by employing an improved extended state observer for real-time estimation of disturbances. This approach offers advantages such as high dynamics, strong disturbance rejection, and good current sharing. Finally, an experimental prototype with a rated power of 1000 W, maximum efficiency of 96.9%, and power density of 12.9 W/cm2 was constructed. Comparing three different control schemes, the response waveforms of the prototype verify the feasibility and advancement of the scheme in this paper.
Czasopismo
Rocznik
Tom
Strony
21--44
Opis fizyczny
Bibliogr. 27 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- College of Electrical Engineering and Automation, Fuzhou University, China
autor
- College of Electrical Engineering, Qingdao University, China
autor
- College of Electrical Engineering, Qingdao University, China
autor
- College of Electrical Engineering and Automation, Fuzhou University, China
Bibliografia
- [1] Boukoberine M.N., Zhou Z., Benbouzid M., Power Supply Architectures for Drones - A Review, In IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Lisbon, Portugal, pp. 5826–5831 (2019), DOI: 10.1109/IECON.2019.8927702.
- [2] Lizzio F.F., Capello E., Guglieri G., A Review of Consensus-based Multi-agent UAV Implementations, J. Intell. Robot. Syst., vol. 106, no. 43 (2022), DOI:10.1007/s10846-022-01743-9.
- [3] Xie K., Xu J., Pan Z., Research and application of anti-offset wireless charging plant protection UAV, Electr. Eng., vol. 102, pp. 2529–2537 (2020), DOI: 10.1109/IECON.2019.8927702.
- [4] Li H., Long R., Zhang L., Chen Q., Analysis and Design of Four-Phase Interleaved Parallel Buck Converter Based on High-Power Charging System for Electric Vehicles, In: 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE, Shenzhen, China, pp. 38–43 (2020), DOI: 10.1109/ICARCV50220.2020.9305384.
- [5] Sinha M., Poon J., Johnson B.B. et al., Decentralized Interleaving of Parallel-connected Buck Converters, IEEE Trans. Power Electron., vol. 34, pp. 4993–5006 (2019), DOI: 10.1109/TPEL.2018.2868756.
- [6] Wang X., Wang E., Zhang H., Design of improved double closed-loop controlled interleaved parallel buck circuit, In: 2017 International Conference on Advanced Mechatronic Systems (ICAMechS), IEEE, Xiamen, pp. 224–229 (2017), DOI: 10.1109/ICAMechS.2017.8316539.
- [7] Wang Y., Cheng P., Ma X. et al., Design of miniaturized and lightweight coupling inductors for interleaved parallel DC/DC converters, J. Power Electron., vol. 21, pp. 1439–1450 (2021), DOI: 10.1007/s43236-021-00291-z.
- [8] Zhang M., Yuan M., Jiang J., A Comprehensive Review of the Multiphase Motor Drive Topologies for High-Power Electric Vehicle: Current Status, Research Challenges, and Future Trends, In IEEE Transactions on Transportation Electrification (2024), DOI: 10.1109/TTE.2024.3443926.
- [9] Lucas K.E., Pagano D.J., Vaca-Benavides D.A. et al., Robust Control of Interconnected Power Electronic Converters to Enhance Performance in DC Distribution Systems: A Case of Study, IEEE Trans. Power Electronics, vol. 36, pp. 4851–4863 (2021), DOI: 10.1109/TPEL.2020.3019402.
- [10] Bonela A.K., Sarkar M.K., Kumar K., Robust non-fragile control of DC–DC buck converter, Electr. Eng., vol. 106, pp. 983–991 (2024), DOI: 10.1007/s00202-023-02017-9.
- [11] Masoomi M., Bagherian Farahabadi H., Pahnabi A., Modular multi-phase DC–DC converter with enhanced dynamic performance based on Lyapunov function, Electr. Eng., vol. 105, pp. 3773–3789 (2023), DOI: 10.1007/s00202-023-01893-5.
- [12] Ma W., Zhang B., Qiu D., Sun H., Switching Control Strategy for DC–DC Converters Based on Polynomial Lyapunov Function and Sum-of-Squares Approach, in IEEE Transactions on Industrial Electronics, vol. 70, no. 4, pp. 3663–3673 (2023), DOI: 10.1109/TIE.2022.3179548.
- [13] Khoshkbar Sadigh A., Smedley K.M., Fast and precise voltage sag detection method for dynamic voltage restorer (DVR) application, Electric Power Systems Research, vol. 130, pp. 192–207 (2016), DOI: 10.1016/j.epsr.2015.08.002.
- [14] Ben Abdelkader A., Toumi T., Abdelkhalek O., Experimental verification of dynamic voltage restorer fed by solar PV: lithium-ion battery storage for lasting power quality improvement, Electr. Eng., vol. 104, pp. 4581–4593 (2022), DOI: 10.1007/s00202-022-01634-0.
- [15] Thenmozhi M., Umamaheswari S., Stonier A.A., Thangavel J., Design and implementation of photovoltaic-assisted dynamic voltage restorer using fuzzy logic controller-based improved SOGI for power quality improvement, Electr. Eng. (2023), DOI: 10.1007/s00202-023-02150-5.
- [16] Shah K., Neeli S., State and disturbance observer-based predictive control for DC–DC converters integrated with a photovoltaic system, Electr. Eng., vol. 105, pp. 3969–3982 (2023), DOI: 10.1007/s00202- 023-01930-3.
- [17] Kranda E., Gokdag M., Gulbudak O., Enhancement of Steady-State Performance of PFC Boost Rectifier using Modulated Model Predictive Control, 2023 5th Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkiye, pp. 50–55 (2023), DOI: 10.1109/GPECOM58364.2023.10175713.
- [18] Michel L., Join C., Fliess M. et al., Model-free control of dc/dc converters, In: 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, Boulder, CO, USA, pp. 1–8 (2010), DOI: 10.1109/compel.2010.5562385.
- [19] Zhang Y., Jiang T., Jiao J., Model-Free Predictive Current Control of a DFIG Using an Ultra-Local Model for Grid Synchronization and Power Regulation, IEEE Trans. Energy Convers., vol. 35, pp. 2269–2280 (2020), DOI: 10.1109/TEC.2020.3004567.
- [20] Talbi B., Krim F., Laib A. et al., PI-MPC Switching Control for DC–DC Boost Converter using an Adaptive Sliding Mode Observer, In: 2020 International Conference on Electrical Engineering (ICEE), IEEE, Istanbul, Turkey, pp. 1–5 (2020), DOI: 10.1109/ICEE49691.2020.9249934.
- [21] Ridley R.B., A new continuous-time model for current-mode control with constant frequency, constant on time, and constant off-time, in CCM and DCM, In: 21st Annual IEEE Conference on Power Electronics Specialists, IEEE, San Antonio, TX, USA, pp. 382–389 (1990), DOI: 10.1109/PESC.1990.131213.
- [22] Janke W., Characteristic frequencies in averaged description of step-down (BUCK) DC–DC power converter, Archives of Electrical Engineering, vol. 65, no. 4, pp. 703–717 (2016), DOI: 10.1515/aee2016-0049.
- [23] Gao Z., Scaling and bandwidth-parameterization based controller tuning, In: Proceedings of the 2003 American Control Conference, IEEE, Denver, CO, USA, pp. 4989–4996 (2003), DOI: 10.1109/ACC.2003.1242516.
- [24] Kim J.-W., Choi H.-S., Cho B.H., A novel droop method for converter parallel operation, IEEE Trans. Power Electron., vol. 17, pp. 25–32 (2002), DOI: 10.1109/63.988666.
- [25] Janke W., Bączek M., Kraśniewski J., Averaged model of a buck DC–DC converter for single-loop description of current-mode control, Archives of Electrical Engineering, vol. 64, no. 8, pp. 891–905 (2019), DOI: 10.24425/aee.2019.130690.
- [26] Zhang B., Hong D., Wang T., A novel two-phase interleaved parallel bi-directional DC/DC converter, Archives of Electrical Engineering, vol. 70, no. 1, pp. 219–231 (2024), DOI: 10.24425/aee.2021.136063.
- [27] Su B., Zhang J., Lu Z., Totem-Pole Boost Bridgeless PFC Rectifier with Simple Zero-Current Detection and Full-Range ZVS Operating at the Boundary of DCM/CCM, In IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 427–435(2011), DOI: 10.1109/TPEL.2010.2059046.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fabe624b-cf4a-4141-985c-a365b51a9e0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.