PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dye removal from textile waste water using potato starch : parametric optimization using Taguchi design of experiments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Typical textile waste water contains a high concentration of spent dye that can pose serious destructive impact on aquatic environment. Therefore, treatment of textile industry effluents is strictly imposed by the relevant government authorities and environmental protection agencies. During present studies, spent dye was removed using potato starch, an environmental friendly, biodegradable and cost effective coagulant, through coagulation/flocculation process. Analysis of variance (ANOVA) was performed that indicated the interaction of process parameters. It was observed that the interaction of temperature, pH and coagulant dosage were the most significant parameters that can affect the coagulation/flocculation process. So, temperature, pH and coagulant dosage were optimized by Taguchi optimization technique. The results indicated that maximum dye (about 27%) was removed when temperature, pH and coagulant dosage were kept at 55°C, 10 and 0.5% (w/v), respectively.
Słowa kluczowe
Rocznik
Strony
26--31
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • University of Engineering and Technology (Lahore) Faisalabad Campus, Pakistan
autor
  • University of Engineering and Technology (Lahore) Faisalabad Campus, Pakistan
autor
  • University of Engineering and Technology (Lahore) Faisalabad Campus, Pakistan
autor
  • University of Engineering and Technology (Lahore) Faisalabad Campus, Pakistan
autor
  • University of Engineering and Technology (Lahore) Faisalabad Campus, Pakistan
Bibliografia
  • 1. Amuda, O. & Amoo, I. (2007). Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment, Journal of Hazardous Materials, 141(3), pp. 778–783.
  • 2. Ariffin, A., Shatat, R.S., Nik Norulaini, A. & Mohd Omar, A. (2005). Synthetic polyelectrolytes of varying charge densities but similar molar mass based on acrylamide and their applications on palm oil mill effluent treatment, Desalination, 173(3), pp. 201–208.
  • 3. Berger, J., Reist, M., Mayer, J., Felt, O., Peppas, N. & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, European Journal of Pharmaceutics and Biopharmaceutics, 57(1) pp. 19–34.
  • 4. Blackburn, R.S. (2004). Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment, Environmental Science & Technology, 38(18), pp. 4905–4909.
  • 5. Chiou, M.-S. & Li, H.-Y. (2002). Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads, Journal of Hazardous Materials, 93(2), pp. 233–248.
  • 6. Christie, R.M. (2001). Colour chemistry. The Royal Society of Chemistry.
  • 7. Ciesielski, W., Lii, C.-Y., Yen, M.-T. & Tomasik, P. (2003). Interactions of starch with salts of metals from the transition groups, Carbohydrate Polymers, 51(1), pp. 47–56.
  • 8. Del Valle, E.M. (2004). Cyclodextrins and their uses: a review, Process Biochemistry, 39(9), pp. 1033–1046.
  • 9. Delval, F., Vebrel, J., Pont, P., Morcellet, M., Janus, L. & Crini, G. (2000). Sorption properties toward aromatic compounds of insoluble crosslinked polymers containing starch derivatives, Polymer Recycling, 5(3), pp. 137–144.
  • 10. Elkady, M., Ibrahim, A. M. & El-Latif, M. (2011). Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads, Desalination, 278(1), pp. 412–423.
  • 11. Figueiredo, S., Boaventura, R. & Loureiro, J. (2000). Color removal with natural adsorbents: modeling, simulation and experimental, Separation and Purification Technology, 20(1), pp. 129–141.
  • 12. Freund, R.J. & Littell, R.C. (1981). SAS for linear models: a guide to the ANOVA and GLM procedures. Sas Institute.
  • 13. Gao, B.-Y., Yue, Q.-Y., Wang, Y. & Zhou, W.-Z. (2007). Color removal from dye-containing wastewater by magnesium chloride, Journal of Environmental Management, 82(2), pp. 167–172.
  • 14. Gupta, V. (2009). Application of low-cost adsorbents for dye removal–A review, Journal of Environmental Management, 90(8), pp. 2313–2342.
  • 15. Hao, Y., Yang, X., Zhang, J., Hong, X. & Ma, X. (2006). Flocculation Sweeps a Nation, Pollution Engineering, 38, pp. 12–13.
  • 16. Iqbal, M.K., Nadeem, A. & Shafiq, T. (2007). Biological treatment of textile waste water by activated sludge process, Journal of the Chemical Society of Pakistan, 29(5), pp. 397–400.
  • 17. Jesus, A., Romão, L., Araújo, B., Costa, A. & Marques, J. (2011). Use of humin as an alternative material for adsorption/desorption of reactive dyes, Desalination, 274(1), pp. 13–21.
  • 18. Kim, T.-H., Park, C., Yang, J. & Kim, S. (2004). Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, Journal of Hazardous Materials, 112(1), pp. 95–103.
  • 19. Robinson, T.J., Borror, C.M. & Myers, R.H. (2004). Robust parameter design: a review, Quality and Reliability Engineering International, 20(1), pp. 81–101.
  • 20. Roussy, J., Chastellan, P., Vooren, M.V. & Guibal, E. (2005). Treatment of ink-containing wastewater by coagulation/flocculation using biopolymers, Water SA, 31(3), pp. 369–376.
  • 21. Sanghi, R., Bhattacharya, B., Dixit, A. & Singh, V. (2006). Ipomoea dasysperma seed gum: An effective natural coagulant for the decolorization of textile dye solutions, Journal of Environmental Management, 81(1), pp. 36–41.
  • 22. Shore, J. (1995). Cellulosics dyeing. Society of Dyers and Colourists. Taguchi, G. (1987). Systems of experimental design: engineering methods to optimize quality and minimize cost. Quality Resources.
  • 23. Veeramalini, J.B., Sravenakumar, K. & Joshua, A.D. (2012). Removal of reactive yellow dye from aqueous solutions by using natural coagulant (Moringa Oleifera), International Journal of Environmental Science and Technology, 1, pp. 56–62.
  • 24. Wu, F.-C., Tseng, R.-L. & Juang, R.-S. (2001). Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization, Journal of Hazardous Materials, 81(1), pp. 167–177.
  • 25. Zemaitaitiene, R.J., Zliobaite, E., Klimaviciute, R. & Zemaitaitis, A. (2003). The role of anionic substances in removal of textile dyes from solutions using cationic flocculant, Colloids and surfaces A physicochemical and engineering aspects, 214(1), pp. 37–47
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fabd8632-9c74-45a1-9ac8-5ac95ee434c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.