PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Logistic Regression Realized with Artificial Neuron and Estimation Formulas

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper an experiment is described, that was designed and conducted to verify hypothesis that artificial neuron with sigmoidal activation function can efficiently solve the task of logistic regression in the case when the explaining variable is one-dimensional, and the explained variable is binomial. Computations were performed with 12 sets of statistical parameters, assumed for the generation of 65356 sets of data in each case. Comparative analysis of the obtained results with use of the reference values for the regression coefficients indicated that the investigated neuron can satisfactory perform the task, with efficiency similar to that obtained with classical logistic regression algorithm, when the teaching sets of input data, corresponding with output values 0 and 1, do not allow for simple separation. Moreover, it has been discovered that the simple formulas estimating the statistical distributions parameters from the samples, offer statistically superior assessment of the regression coefficient parameters.
Twórcy
autor
  • AGH University of Science and Technology, Chair of Electronics, Krakow, Poland
  • AGH University of Science and Technology, Chair of Automatics and Biomedical Engineering, Krakow, Poland
Bibliografia
  • [1] A. Akcan-Arikan, M. Zappitelli, L.L. Loftis, K.K. Washburn, L.S. Jefferson, S.L. Goldstein, Modified RIFLE criteria in critically ill children with acute kidney injury, Kidney International, Vol. 71, pp. 1028-1035, 2007
  • [2] Y. Li, C. Fu, X. Zhou, Z. Xiao, X. Zhu, M. Jin, X. Li, X. Feng, Urine interleukin-18 and cystatin- C as biomarkers of acute kidney injury in critically ill neonates, Pediatric Nephrology, Vol. 27, No. 5, pp. 851-60, 2012
  • [3] K.D. Liu, C. Altmann, G. Smits, C.D. Krawczeski, C.L. Edelstein, P. Devarajan, S. Faubel, Serum Interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: a case-control study, Critical Care, Vol. 13, pp. R104, , 2009
  • [4] P. Peduzzi, J. Concato, E. Kemper, T.R. Holford, A.R. Feinstein, A simulation study of the number of events per variable in logistic regression analysis, Journal of Clinical Epidemiology, Vol. 49, pp. 1373-1379, 1996
  • [5] A. Petrie, C. Sabin, Statystyka medyczna w zarysie, (In Polish)Wydawnictwo Lekarskie PZWL, Warszawa 2006
  • [6] A. Stanisz, Biostatystyka, podręcznik dla studentów medycyny, (In Polish) Wyd. UJ, Kraków 2005
  • [7] A. Stanisz, Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny, (In Polish)Wyd. 3., Statsoft Polska, Kraków 2006
  • [8] Tadeusiewicz R.: Neural networks. (In Polish) Akademicka Oficyna Wydawnicza RM, Warszawa, 1993.
  • [9] R. Tadeusiewicz, New Trends in Neurocybernetics, Computer Methods in Materials Science, Vol. 10, No. 1, pp. 1-7, 2010
  • [10] C. Watała, Biostatystyka - wykorzystanie metod statystycznych w pracy badawczej w naukach biomedycznych, (In Polish) Alfa-medica Press, Bielsko- Biała 2002
  • [11] J.M. Żurada, Artificial Neural Systems, PWS Publishing Company, 1992
  • [12] MatLab, version 7.5, Mathworks, www.mathworks.com
  • [13] Statistica (data analysis software system), version 10, StatSoft, Inc., www.statsoft.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fab8492b-fc8f-4cdd-ad85-f3bd867037e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.