PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of void growth and coalescence in HDPE material: a numerical investigation using computational voided cells

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a study about the effects of initial porosity and stress triaxiality on void growth and coalescence in High-density polyethylene (HDPE) material. Two approaches are used to modulate the representative material volume: The first one is a unit cell with a spherical void at the center (Voided cell model), and the second is a unit cell containing the same void fraction of volume and obeying to the constitutive relations of Gurson-Tvergaard-Needelman (GTN model). Detailed analyses of finite element gave us: the equivalent stress-strain response, the void growth and coalescence behavior of the representative material volume. Results show that the stress triaxiality and the initial void volume fraction are strongly effective and depended on.
Rocznik
Strony
467--483
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
  • University Djillali Liabes of Sidi Bel Abbes, BP 89 City Ben Mhidi, Sidi Bel Abbes 22000, Algeria
  • University Djillali Liabes of Sidi Bel Abbes, BP 89 City Ben Mhidi, Sidi Bel Abbes 22000, Algeria
  • University Djillali Liabes of Sidi Bel Abbes, BP 89 City Ben Mhidi, Sidi Bel Abbes 22000, Algeria
autor
  • Department of Engineering Mechanics, University of Sciences and Technology of Oran, El Mnaouar, BP 1505, Bir El Djir 31000, Algeria
Bibliografia
  • [1] Schultz, J. M.: Microstructural aspects of failure in semicrystalline polymers, Polymer Engineering and Science, 24, 770-785, 1984.
  • [2] Joy, J. C., Jose, A. A., Maria, A. P., and Alexander, P.: Chain Entanglements and Mechanical Behavior of High Density Polyethylene, ASEM Journal of Engineering Materials and Tecnoogy, 132, 1, 011016-011016-7, 2009.
  • [3] Ellyin and Zihui, X.: Nonlinear Viscoelastic Constitutive Model for Thermoset Polmers, ASEM Journal of Engineering Materials and Technology, 128, 4, 579-585, 2006.
  • [4] Benaoumeur, A., and Ali, M.: Analysis of plastic deformation of semi-crystalline polymers during ecae process using 135° die, Review Journal of Theoretical and Applied Mechanics, 54, 5, 263-275, 2016.
  • [5] Jeridia, M., Laiarinandrasanab, L., Saïa, K.: Comparative study of continuum damage mechanics and Mechanics of Porous Media based on multi-mechanism model on Polyamide 6 semi-crystalline polymer, International Journal of Solids and Structures, 53, 12-27, 2015.
  • [6] Liu, Z. G., Wong, W. H., and Guo, T. F.: Void behaviors from low to high triaxialities: Transition from void collapse to void coalescence, International Journal of Plasticity, 84, 183-202, 2016.
  • [7] Chena, F., Gateaa, S., Oua, H., Lub, B., and Longc, H.: Fracture characteristics of PEEK at various stress triaxialities, Journal of the Mechanical Behavior of Biomedical Materials, 64, 173-186, 2016.
  • [8] Gurson, A. L.: Continuum theory of ductile rupture by void nucleation and growth: Part-I-Yield criteria and flow rules for porous ductile media, ASEM Journal of Engineering Materials and Technology, 99, 1, 2-15, 1977.
  • [9] Sànchez, P. J., Huespe, A. E., and Oliver, J.: On some topics for the numerical simulation of ductile fracture, International Journal of Plasticity, 24, 6, 1008-1038, 2008.
  • [10] Zairi, F., Nait-Abdelaziz, M., Woznica, K., and Gloaguen, J. M.: Elastoviscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate, ASEM Journal of Engineering Materials and Technology, 129, 1, 29-35, 2007.
  • [11] Rashid, K. A., Ardeshir, H. T., and Masoud, K. D.: Application of a large deformation nonlinear viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites, International Journal of Damage Mechanics, 24, 2, 198-244, 2015.
  • [12] Zairi, F., Nait-Abdelaziz, M., Gloaguen, J. M., and Lefebvre.: A physically based constitutive model for anisotropic damage in rubber toughened glassy polymers during finite deformation, International Journal of Plasticity, 27, 1, 25-51, 2011.
  • [13] Mulliken, A. D., and Boyce, M. C.: Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates, International Journal of Solids and Structures, 43, 5, 1331-1356, 2006.
  • [14] Richeton, J., Ahzi, S., Vecchio, K. S., Jiang, F. C., and Makradi, A.: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates, International Journal of Solids and Structures, 44, 4, 7938-7954, 2007.
  • [15] Tvergaard, V.: Influence of voids on shear bands instabilities under plane strain conditions, International Journal of Fracture, 17, 389-407, 1981.
  • [16] Tvergaard, V.: On localization in ductile materials containing spherical voids, International Journal of Fracture, 18, 237-52, 1982.
  • [17] Tvergaard, V., and Needleman A.: Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica, 32, 157-69, 1984.
  • [18] Pardoen, T., and Hutchinson, .J W.: An extended model for void growth and coalescence, Journal of the Mechanics and Physics of Solids, 48, 2467-2512, 2000.
  • [19] Gologanu, M., Leblond, J B., Perrin, G., and Devaux J.: Theoretical models for void coalescence in porous ductile solids. I. Coalescence “in layers”, International Journal of Solids and Structures, 38, 5581-5594, 2001.
  • [20] Koplik, J., and Needleman, A.: Void growth and coalescence in porous plastic solids, International Journal of Solids and Structures, 24, 835-853, 1988.
  • [21] Klocker, H., Tvergaard, V.: Void growth and coalescence in metals deformed at elevated temperature, International Journal of Fracture, 106, 259-276, 2000.
  • [22] Duvan, H., Carlos, M., and Xianmin, X.: A numerical study of void coalescence and fracture in nonlinear elasticity, Computer Methods in Applied Mechanics and Engineering, 303, 163-184, 2016.
  • [23] Keralavarma, S. M., Hoelscher, S., and Benzerga, A. A.: Void growth and coalescence in anisotropic plastic solids, International Journal of Solids and Structures, 48, 1696-1710, 2011.
  • [24] Yerra, SK., Tekoglu, C., Scheyvaerts, F., Delannay, L., Van Houtte, P., and Pardoen, T.: Void growth and coalescence in single crystals, International Journal of Solids and Structures, 47, 1016-1029, 2010.
  • [25] Brocks, W., Sun, DZ., and Honig, A.: Verification of the transferability of micromechanical parameters by cell model calculations with viscoplastic materials, International Journal of Plasticity, 11, 971-989, 1995.
  • [26] Hom, CL., and McMeeking, M.: Void growth in elastic-plastic materials, ASME Journal of Applied Mechanics, 56, 309-317, 1989.
  • [27] Worswick, M., and Pick, R.: Void growth and constitutive softening in a periodically voided solid, Journal of the Mechanics and Physics of Solids, 38, 601-625, 1990.
  • [28] Richelsen, AB., and Tvergaard, V.: Dilatant plasticity or upper bound estimates for porous ductile solids, Acta Metallurgica and Materialia, 8, 2561-77, 1994.
  • [29] Kuna, M., and Sun, DZ.: Three-dimensional cell model analyses of void growth in ductile materials, International Journal of Fracture, 81, 235-258, 1996.
  • [30] Siad, L., Ould Ouali, M., and Benabbes, A.: Comparison of explicit and implicite finite element simulations of void growth and coalescence in porous ductile materials, Materials and Design, 29, 2, 319-329, 2008.
  • [31] Sun, DZ., and Honig, A.: Micromechanics of coalescence in ductile fracture, International Journal of Plasticity, 99, 2-15, 1995.
  • [32] Nahshon, K., and Hutchinson, J.: Modification of the Gurson model for shear failure, European Journal of Mechanics, 27, 1, 1-17, 2008.
  • [33] Wen, J., Huang, Y., Hwang, K., Liu, C., and Li, M.: The modified Gurson model accounting for the void size effect, International Journal of Plasticity, 21, 2, 381-395, 2005.
  • [34] Needleman, A., and Tvergaard, V.: An analysis of ductile rupture in notched bars, Journal of the Mechanics and Physics of Solids, 32, 6, 461-490, 1984.
  • [35] Chu, C., and Needleman, A.: Void nucleation effects in biaxially stretched sheets. ASEM Journal of Engineering Materials and Technology, 102, 3, 249-256, 1980.
  • [36] Benzerga, A. A., and Leblond, J.: Ductile Fracture by Void Growth to Coalescence, to appear in Advances in Applied Mechanics, 2010.
  • [37] Pardoen, T., Doghri, I., and Delannay, F.: Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, Acta Materialia, 46, 541-552, 1998.
  • [38] Kim, J., Gao, X., and Srivatsan, T. S.: Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity, Engineering Fracture Mechanics, 71, 379-400, 2004.
  • [39] Yang, Z., and Zengtao, C.: On the effect of stress triaxiality on void coalescence, International Journal of Fracture, 143, 105-112, 2007.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fab33a2d-fa93-4da2-9988-4d079673dcd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.