PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Performance Assessment of Second-Generation SBAS Prototype in Thailand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study evaluates the preliminary performance of the dual-frequency multiconstellation satellite-based augmentation system (DFMC SBAS) prototype that was deployed in Thailand, focusing on key performance indicators such as positional accuracy and continuity. To this end, real data that was collected from 4, 8, and 12 ground tracking stations in Thailand was used to calculate SBAS corrections for the periods of January 1–7, April 1–7, August 1–7, and December 1–7, 2023. The accuracy of these corrections for single-point positioning was then tested using data from 20 continuously operating reference stations (CORS) in the region. The results showed that the correction data that was derived from the data from the 8 and 12 ground tracking stations significantly improved the efficiency of the single-point positioning, thus meeting the required standards for Category I (CAT-I) aviation operations. This initial assessment provides a solid foundation for the continued development of a fully operational DFMC SBAS that is tailored to Thailand’s specific requirements.
Słowa kluczowe
EN
Rocznik
Strony
75--95
Opis fizyczny
Bibliogr. 47 poz., il., tab., wykr.
Twórcy
  • Chulalongkorn University, Faculty of Engineering, Department of Survey Engineering, Mapping and Positioning from Space (MAPS) Technology Research Center, Bangkok, Thailand
  • Chulalongkorn University, Faculty of Engineering, Department of Survey Engineering, Mapping and Positioning from Space(MAPS) Technology Research Center, Bangkok, Thailand
Bibliografia
  • Gao W., Cao Y., Liu C., Lu J., Shao B., Xiong S., Su C.: Construction progress and aviation flight test of BDSBAS. Remote Sensing, vol. 14(5), 2022, 1218. https://doi.org/10.3390/rs14051218.
  • Pringvanich N., Satirapod C.: SBAS algorithm performance in the implementation of the ASIAPACIFIC GNSS test bed. The Journal of Navigation, vol. 60(3), 2007, pp. 363–371. https://doi.org/10.1017/S0373463307004274.
  • Zheng S., Gao M., Huang Z., Jin X., Li K.: Satellite integrity monitoring for satellite-based augmentation system: An improved covariance-based method. Satellite Navigation, vol. 3(1), 2022, 9. https://doi.org/10.1186/s43020-022-00070-6.
  • Dautermann T.: Civil air navigation using GNSS enhanced by wide area satellite based augmentation systems. Progress in Aerospace Sciences, vol. 67, 2014, pp. 51–62. https://doi.org/10.1016/j.paerosci.2014.01.003.
  • Heßelbarth A., Wanninger L.: SBAS orbit and satellite clock corrections for pre­cise point positioning. GPS Solutions, vol. 17, 2013, pp. 465–473. https://doi.org/10.1007/s10291-012-0292-6.
  • Hu Z., Liu X., Wang G., Zhang Q., Zhou R., Chen L., Zhao Q.: Initial performance assessment of the single­frequency (SF) service with the BeiDou satellitebased augmentation system (BDSBAS). GPS Solutions, vol. 27(1), 2023, 35. https://doi.org/10.1007/s10291-022-01372-7.
  • Pringvanich N., Satirapod C.: Flight test results and analysis of SBAS­like algorithm from the implementation of the Asia­Pacific GNSS test bed. The Aeronautical Journal, vol. 113(1139), 2009, pp. 35–40.
  • Arnold L.L., Zandbergen P.A.: Positional accuracy of the wide area augmentation system in consumer-grade GPS units. Computers & Geosciences, vol. 37(7), 2011, pp. 883–892. https://doi.org/10.1016/j.cageo.2010.12.011.
  • El-Arini M. B., Poor W., Lejeune R., Conker R., Fernow J., Markin K.: An introduction to Wide Area Augmentation System and its predicted performance. Radio Science, vol. 36(5), 2001, pp. 1233–1240. https://doi.org/10.1029/1999RS002426.
  • Gauthier L., Michel P., Ventura-Traveset J., Benedicto J.: EGNOS: The first step in Europe’s contribution to the global navigation satellite system. ESA Bulletin, vol. 105, 2001, pp. 35–42.
  • Li X., Fang K., Wang H., Wang S., Wang Z.: Evaluation for BDSBAS single­ frequency service assisted by data authentication, [in:] Proceedings of the 2025 International Technical Meeting of The Institute of Navigation, Long Beach, California, January 2025, pp. 590–603. https://doi.org/10.33012/2025.19979.
  • Nandulal S., Rao C.B., Indi C.L., Irulappan M., Arulmozhi S., Soma P.: Evaluation of real­time position accuracy and LNAV/VNAV service availability of GAGAN SBAS (Wide Area Differential GPS) over Indian region, [in:] 2008 Tyrrhenian International Workshop on Digital Communications – Enhanced Surveillance of Aircraft and Vehicles, IEEE, 2008, pp. 1–6. https://doi.org/10.1109/TIWDC.2008.4649025.
  • Suryanarayana Rao K.N.: GAGAN – The Indian satellite based augmentation system. Indian Journal of Radio and Space Physics, vol. 36(4), 2007, pp. 293–302.
  • Thari P., Thongtan T., Satirapod C.: GNSS positioning accuracy performance assessments on 1st and 2nd generation SBAS signals in Thailand. Journal of Applied Geodesy, vol. 18(3), 2024. pp. 421–431. https://doi.org/10.1515/jag-2023-0082.
  • Goswami M., Mahato S., Ghatak R., Bose A.: Potential of satellite­based augmentation systems (SBAS) in test and evaluation of missiles in Indian test range applications. Journal of the Indian Society of Remote Sensing, vol. 51(12), 2023, pp. 2537–2547. https://doi.org/10.1007/s12524-023-01787-w.
  • Dammalage T., De Silva D.N., Satirapod C.: Performance analysis of GPS aided geo augmented navigation (GAGAN) over Sri Lanka. Engineering Journal, vol. 21(5), 2017, pp. 305–314. https://doi.org/10.4186/ej.2017.21.5.305.
  • Pungpet P., Kitpracha C., Promchot D., Satirapod C.: Positioning accuracy analyses on GPS single point positioning determination with GAGAN correction services in Thailand, [in:] 2018 15th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI­CON), IEEE, 2018, pp. pp. 724–727. https://doi.org/10.1109/ECTICon.2018.8619969.
  • Thari P., Kriengkraiwasin S., Satirapod C.: Evaluation of GNSS positioning accuracy from satellite­based augmentation systems in Thailand. Engineering & Applied Science Research, vol. 49(2), 2022, pp. 209–217. https://doi.org/10.14456/easr.2022.23.
  • Barrios J., Pericacho J.G., Domenech G., López N.A.: Worldwide SBAS broadcasts between 2017 and 2022: A comparative study, [in:] Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022). Denver, Colorado 2022, pp. 117–153. https://doi.org/10.33012/2022.18356.
  • Charoenkalunyuta T., Satirapod C.: Effect of Thai ionospheric maps (THIM) model on the performance of network based RTK GPS in Thailand. Survey Review, vol. 46(334), 2014, pp. 1–6. https://doi.org/10.1179/1752270613Y.0000000055.
  • Tsujii T., Fujiwara T., Kubota T., Satirapod C., Supnithi P., Tsugawa T., Lee H.: Measurement and simulation of equatorial ionospheric plasma bubbles to assess their impact on GNSS performance. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, vol. 30(6_2), 2012, pp. 607–613.
  • Prakanrattana K., Satirapod C.: Comparative study of using different ionosphere models in Thailand for single­frequency GNSS users. Survey Review, vol. 51(366), 2019, pp. 213–218. https://doi.org/10.1080/00396265.2018.1426260.
  • Ma G., Hocke K., Li J., Wan Q., Lu W., Fu W.: GNSS ionosphere sounding of equatorial plasma bubbles. Atmosphere, vol. 10(11), 2019, 676. https://doi.org/10.3390/atmos10110676.
  • Balan N., Liu L., Le H.: A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth and Planetary Physics, vol. 2(4), 2018, pp. 257–275.
  • Luo X., Wang D., Wang J., Wu Z., Gao J., Zhang T., Yang C., Qin X., Chen X.: Study of the spatiotemporal characteristics of the equatorial ionization anomaly using shipborne multi-GNSS data: a case analysis (120–150°E, Western Pacific Ocean, 2014–2015). Remote Sensing, vol. 13(15), 2021, 3051. https://doi.org/10.3390/rs13153051.
  • Sophan S., Myint L. M., Saito S., Supnithi P.: Performance improvement of the GAGAN satellite-based augmentation system based on local ionospheric delay estimation in Thailand. GPS Solutions, vol. 26(4), 2022, 130. https://doi.org/10.1007/s10291-022-01293-5.
  • Liu Y., Cao Y., Tang C., Chen J., Zhao L., Zhou S., Hu X., Tian Q., Yang Y.: Pseudorange bias analysis and preliminary service performance evaluation of BDSBAS. Remote Sensing, vol. 13(23), 2021, 4815. https://doi.org/10.3390/rs13234815.
  • Netthonglang C., Thongtan T., Satirapod C.: GNSS precise positioning determinations using smartphones, [in:] 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), IEEE, 2019, pp. 401–404. https://doi.org/10.1109/APCCAS47518.2019.8953132.
  • Yang Y., Ding Q., Gao W., Li J., Xu Y., Sun B.: Principle and performance of BDSBAS and PPP­B2b of BDS-3. Satellite Navigation, vol. 3(1), 2022, 5. https://doi.org/10.1186/s43020-022-00066-2.
  • Cao Y., Chen J., Liu L., Hu X., Liu Y., Xin J., Zhao L., Tian Q., Zhao S., Wu B.: Development status and service performance preliminary analysis for BDSBAS. Remote Sensing, vol. 14(17), 2022, 4314. https://doi.org/10.3390/rs14174314.
  • Schlüter S., Hoque M.M.: An SBAS integrity model to overbound residuals of higher­order ionospheric effects in the ionosphere­free linear combination. Remote Sensing, vol. 12(15), 2020, 2467. https://doi.org/10.3390/rs12152467.
  • Mahato S., Santra A., Dan S., Verma P., Banerjee P., Bose A.: Visibility anomaly of GNSS satellite and support from regional systems. Current Science, vol. 119(11), 2020, pp. 1774–1782. https://doi.org/10.18520/cs/v119/i11/1774-1782.
  • El-Mowafy A., Cheung N., Rubinov E.: First results of using the second generation SBAS in Australian urban and suburban road environments. Journal of Spatial Science, vol. 65(1), 2020, pp. 99–121. https://doi.org/10.1080/14498596.2019.1664943.
  • Wang K., El-Mowafy A., Khaki M., Sutherland T., Rubinov E.: Assessment of the new DFMC and PPP services of the second­generation SBAS in the mining and urban environments, [in:] Proceedings of International Global Navigation Satellite Systems Symposium (IGNSS 2020), 5–7 February 2020, Sydney, Australia, 2020, pp. 1–15. https://espace.curtin.edu.au/handle/20.500.11937/79701.
  • Wu J., Wang K., El-Mowafy A.: Preliminary performance analysis of a prototype DFMC SBAS service over Australia and Asia­Pacific. Advances in Space Research, vol. 66(6), 2020, pp. 1329–1341. https://doi.org/10.1016/j.asr.2020.05.026.
  • Shao B., Ding Q., Wu X.: Estimation method of SBAS dual­frequency range error integrity parameter. Satellite Navigation, vol. 1(1), 2020, 9. https://doi.org/10.1186/s43020-020-00011-1.
  • Wang X., Cui X., Wei K., Liu G., Gao Y., Lu M.: Signal quality monitoring algorithms of DFMC SBAS for dual­frequency civil signals of BDS, [in:] Yang C., Xie J. (eds.), China Satellite Navigation Conference (CSNC 2021) Proceedings: Volume II, Lecture Notes in Electrical Engineering, vol. 773, Springer, Singapore 2021, pp. 75–91. https://doi.org/10.1007/978-981-16-3142-9_8.
  • Liu Y., Cao Y., Shao B., Tang C., Zhou S., Hu X., Yang J., Liu J., Li P.: Research on performance improvement method of BDSBAS multi-GNSS service with DFMC protocol. Advances in Space Research, vol. 72(6), 2023, pp. 2283–2296. https://doi.org/10.1016/j.asr.2023.06.024.
  • Wang Z., Wang L., Xie W., Huang G., Yang W., Tian Y.: DFMC SBAS service performance analysis of multi­GNSS based on BDS­3 in different regions. Measurement Science and Technology, vol. 35(11), 2024, 116310. https://doi.org/10.1088/1361-6501/ad6f38.
  • Zhao L., Hu X., Tang C., Cao Y., Zhou S., Yang Y., Liu L., Guo R.: Generation of DFMC SBAS corrections for BDS­3 satellites and improved positioning performances. Advances in Space Research, vol. 66(3), 2020, pp. 702–714. https://doi.org/10.1016/j.asr.2020.04.032.
  • Sophan S., Myint L.M., Supnithi P.: Preliminary evaluations of user positioning errors in DFMC SBAS demo at Thailand location, [in:] Proceedings of International Workshop on ATM/CNS 2022, Electronic Navigation Research Institute, Tokyo 2022, pp. 49–54. https://doi.org/10.57358/iwac.1.0_49.
  • Barrios J., Caro J., Calle J.D., Carbonell E., Pericacho J.G., Fernández G., Esteban V.M., Fernández M.A., Bravo F., Torres B., Calabrese A., Diaz A., Rodríguez I., Laínez M.D., Romay M.M., Jackson R., Reddan R.E., Bunce D., Soddu C.: Update on Australia and New Zealand DFMC SBAS and PPP system results, [in:] Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Institute of Navigation, 2018, pp. 1038–1067. https://doi.org/10.33012/2018.15932.
  • Cheng L., Weiguang G., Bo S., Jun L., Wei W., Ying C., Chengeng S., Shuai X., Qun D.: Development of BeiDou satellite­based augmentation system. Navigation, vol. 68(2), 2021, pp. 405–417. https://doi.org/10.1002/navi.422.
  • Wang X., Cui X., Liu G., Lu M.: Designing the signal quality monitoring algorithm based on chip domain observables for BDS B1C/B2a signals under the requirements of DFMC SBAS, Remote Sensing, vol. 15(4), 2023, 1008. https://doi.org/10.3390/rs15041008.
  • EUROCAE: ED­259A: Minimum Operational Performance Standard for Dual­ Frequency Multi­Constellation Satellite­Based Augmentation System Airborne Equipment. European Organization for Civil Aviation Equipment, SaintDenis, France 2023.
  • ICAO: Annex 10 to the Convention on International Civil Aviation: Aeronautical Telecommunication. Volume I: Radio Navigation Aids. 7th ed. International Civil Aviation Organization, Montréal, Quebec, Canada 2018.
  • ICAO.: Doc 9613: Performance­based Navigation (PBN) Manual. 5th ed. International Civil Aviation Organization, Montreal 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faafff0c-dbb6-495e-8a15-9814e1d688c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.