PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation and Analysis of Mathematical Modeled Drive Train System in Type III Wind Turbines Using Computational Fluid Dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is based on designing a modified rotor for a drivetrain in a Type-III wind turbine system for maximum power generation to work effectively under low and high wind speed and its variation. In this paper three drive trains are designed for the gearbox to provide regulated torque and thrust force. For time to time variation in wind speed the voltage sag and during over speed condition voltage swell problem can be solved by using this modified design. The pitch control, gear box and yaw of the wind turbine basically focused for modification. Mainly the gear box for the rotor causes sluggish motion of the rotor during low wind speed. This paper explained the design of modified rotor control for the gear box in DFIG based (Type-III) wind turbine. Also in this paper how the modified rotor system can be helpful for reactive power control highlighted with comparison with existing models. For designing MATLAB Simulink platform is taken and validated using CFD mechanical design analysis. Using these types of modified drive trains maximum power for the wind turbines is enhanced by 40–60% of its reference value.
Twórcy
  • School of Electrical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751003, India
  • School of Electrical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751003, India
  • School of Electrical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751003, India
  • School of Electrical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751003, India
  • School of Electrical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751003, India
Bibliografia
  • 1. Medeiros Rocha M., Patrocinio da Silva J., das Chagas Barbosa de Sena F. Simulation of a fuzzy control applied to a variable speed wind system connected to the electrical network. IEEE Lat Am Trans. 2018; 16(2): 521–526. Available from: https://ieeexplore.ieee.org/document/8327408
  • 2. Ganthia B.P., Barik S.K. Steady-state and dynamic comparative analysis of PI and fuzzy logic controller in Stator voltage oriented controlled DFIG fed wind energy conversion system. J Inst Eng (India) Ser B. 2020; 101(3): 273–286. Available from: http://dx.doi.org/10.1007/s40031-020-00455-8
  • 3. Ganthia B.P., Barik S.K., Nayak B. Shunt connected FACTS devices for LVRT capability enhancement in WECS. Eng technol Appl Sci Res. 2020; 10(3): 5819–5823. Available from: https://etasr. com/index.php/ETASR/article/view/3560
  • 4. Ganthia B.P., Mohanty S., Rana P.K., Sahu P.K. Compensation of voltage sag using DVR with PI controller. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE 2016, 2138–2142.
  • 5. Ganthia B.P., Kumar Rana P., Patra T., Pradhan R., Sahu R. Design and analysis of gravitational search algorithm based TCSC controller in power system. Mater Today. 2018; 5(1): 841–847. Available from: https://www.sciencedirect.com/science/article/pii/ S221478531732401X
  • 6. Honrubia-Escribano A., Jimenez-Buendia F., Gomez-Lazaro E., Fortmann J. Field validation of a standard type 3 wind turbine model for power system stability, according to the requirements imposed by IEC 61400-27-1. IEEE trans energy convers. 2018; 33(1): 137–145. Available from: https:// ieeexplore.ieee.org/document/8006301
  • 7. Sun L., Peng C., Hu J., Hou Y. Application of type 3 wind turbines for system restoration. IEEE Trans Power Syst. 2018; 33(3): 3040–3051. Available from: https://ieeexplore.ieee.org/document/8067521
  • 8. Guest E., Jensen K.H., Rasmussen T.W. Sequence domain harmonic modeling of type-IV wind turbines. IEEE Trans Power Electron. 2018; 33(6): 4934–4943. Available from: https://ieeexplore. ieee.org/document/8000361
  • 9. Ganthia B.P., Barik S.K., Nayak B. Low voltage ride through capability enhancement using series connected fact devices in wind energy conversion system. Edu.my. [cited 2021 Dec 9]. Available from: https://jestec.taylors.edu.my/Vol%2016%20 issue%201%20February%202021/16_1_26.pdf
  • 10. Goksu O., Altin M., Fortmann J., Sorensen P.E. Field validation of IEC 61400-27-1 wind generation type 3 model with plant power factor controller. IEEE trans energy convers. 2016; 31(3): 1170– 1178. Available from: https://ieeexplore.ieee.org/ document/7438835
  • 11. Hussein D.N., Matar M., Iravani R. A wideband equivalent model of type-3 wind power plants for EMT studies. IEEE trans power deliv. 2016; 31(5): 2322–2331. Available from: https://ieeexplore. ieee.org/document/7448463
  • 12. Joshi Y., Maherchandani J.K., Yadav V.K., Jangid R., Vyas S., Sharma S.S. Performance improvement of standalone battery integrated hybrid system. In: 2021 7th International Conference on Electrical Energy Systems (ICEES). IEEE 2021, 250–255.
  • 13. Joshi B., Maherchandani J.K., Chhipa A.A. Comparison between open and closed loop battery charging technique for lithium-ion battery. In: 2021 7th International Conference on Electrical Energy Systems (ICEES). IEEE 2021, 150–155.
  • 14. Van T.L., Nguyen T.H., Lee D.C. Advanced pitch angle control based on fuzzy logic for variablespeed wind turbine systems. IEEE trans energy convers. 2015; 30(2): 578–587. Available from: https://ieeexplore.ieee.org/document/7018971
  • 15. Daniela H.A., D. MI. Type IV Wind Turbine Model. Dtu.dk. [cited 2021 Dec 9]. Available from: https://backend.orbit.dtu.dk/ws/files/102281784/ Type_IV_wind_turbine_model.pdf
  • 16. Shrimali B., Maherchandani J.K., Chhipa A.A. Vehicle to grid system integration for frequency regulation of renewable based microgrid. In: 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). IEEE 2021, 1–6.
  • 17. Jangid R., Maherchandani J.K., Joshi R.R., Das Vairagi B. Development of advance energy management strategy for standalone hybrid wind & PV system considering rural application. In: 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE 2019, 1217–1223.
  • 18. Zerouali M., Boutouba M., Ougli A.E., Tidhaf B. Control of variable speed wind energy conversion systems by fuzzy logic and conventional P&O. In: 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). IEEE 2019, 1–5.
  • 19. Ferrari M., Orendorff M., Smith T., Buckner M.A. Open-code, real-time emulation testbed of gridconnected type-3 wind turbine system with hardware validation. In: 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE 2019, 66–70.
  • 20. Zaki Diab A.A., Hassan M.S., Shoyama M. Modified adaptive sliding mode control for sensorless direct-drive permanent magnet synchronous generator wind turbines based on fuzzy logic control. In: 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC). IEEE 2019, 1–8.
  • 21. Eisa S.A., Stone W., Wedeward K. Mathematical modeling, stability, bifurcation analysis, and simulations of a type-3 DFIG wind turbine’s dynamics with pitch control. In: 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech). IEEE 2017, 334–341.
  • 22. Ganthia B.P., Agarwal V., Rout K., Pardhe M.K. Optimal control study in DFIG based wind energy conversion system using PI & GA. In: 2017 International Conference on Power and Embedded Drive Control (ICPEDC). IEEE 2017, 343–347.
  • 23. Muljadi E., Gevorgian V., Hoke A. Energy storage opportunities and capabilities of a type 3 wind turbine generator. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE 2016, 1–5.
  • 24. Siraj K., Siraj H., Nasir M. Modeling and control of a doubly fed induction generator for grid integrated wind turbine. In: 2014 16th International Power Electronics and Motion Control Conference and Exposition. IEEE 2014, 901–906.
  • 25. Gogdare A.N., Doroudi A., Ghaseminejad M. A new method to mitigate voltage fluctuation of a fixed speed wind farm using DFIG wind turbine. In: 2012 Proceedings of 17th Conference on Electrical Power Distribution. 2012; 1–6.
  • 26. Belmokhtar K., Doumbia M.L., Agbossou K. Modelling and fuzzy logic control of DFIG based Wind Energy Conversion Systems. In: 2012 IEEE International Symposium on Industrial Electronics. IEEE 2012, 1888–1893.
  • 27. Dscet.ac.in. [cited 2021 Dec 9]. Available from: https://dscet.ac.in/questionbank/aero/seventh-sem/ AE6009-Industrial-Aerodynamics.pdf.
  • 28. Zhang X., Wang Y. Robust fuzzy control for doubly fed wind power systems with variable speed based on variable structure control technique. Math Probl Eng. 2014; 2014: 1–13. Available from: https:// www.hindawi.com/journals/mpe/2014/750101/
  • 29. Ghane M., Nejad A.R., Blanke M., Gao Z., Moan T. Diagnostic monitoring of drivetrain in a 5 MW spar-type floating wind turbine using Hilbert spectral analysis. Energy Procedia. 2017; 137: 204–213. Available from: https://orbit.dtu.dk/en/ publications/diagnostic-monitoring-of-drivetrainin-a-5-mw-spar-type-floating
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faaf30fc-bf02-45a9-affa-3341f46283a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.