PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solving the economic dispatch by new hybrid algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozwiązanie wysyłki ekonomicznej za pomocą nowego algorytmu hybrydowego
Języki publikacji
EN
Abstrakty
EN
The problem of economic dispatch is the minimization of the total cost of production by satisfying the demand of the load. The resolution of this problem is a way of managing an electricity production system taking into account the constraints of equalities and inequalities, in other words it is to find the optimal production for a given combination of units in operation. The appearance of meta-heuristic methods which are part of artificial intelligence, has effectively contributed to solving this problem. Bee colony optimization is a very recent family of meta-heuristics. Its principle is based on the behavior of real bees in life. Bees have properties that are quite different from those of other insect species. They live in colonies, building their nests in tree trunks or other similar enclosed spaces. In this paper, we will apply the optimization by colony of bees in test systems of different sizes with the aim of minimizing the cost of production of electrical energy by taking into account the effect of the valve points of the power plants. In order to see the effectiveness of the proposed algorithm, it has been compared with other algorithms in the literature.
PL
Problem ekonomicznej wysyłki polega na minimalizacji całkowitego kosztu produkcji poprzez zaspokojenie zapotrzebowania na ładunek. Rozwiązanie tego problemu to sposób zarządzania systemem wytwarzania energii elektrycznej z uwzględnieniem ograniczeń równości i nierówności, czyli znalezienie optymalnej produkcji dla danej kombinacji pracujących jednostek. Pojawienie się metod metaheurystycznych wchodzących w skład sztucznej inteligencji skutecznie przyczyniło się do rozwiązania tego problemu. Optymalizacja kolonii pszczół to bardzo nowa rodzina metaheurystyk. Jego zasada opiera się na zachowaniu prawdziwych pszczół w życiu. Pszczoły mają właściwości zupełnie odmienne od właściwości innych gatunków owadów. Żyją w koloniach, budując gniazda w pniach drzew lub innych podobnych zamkniętych przestrzeniach. W tym artykule zastosujemy optymalizację przez rodzinę pszczół w układach testowych różnej wielkości w celu minimalizacji kosztów produkcji energii elektrycznej poprzez uwzględnienie wpływu punktów zaworowych elektrowni. Aby sprawdzić skuteczność zaproponowanego algorytmu, porównano go z innymi algorytmami dostępnymi w literaturze.
Rocznik
Strony
164--169
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Engineering, Laboratory of sustainable development of electrical energy (LDDEE), University of Science and Technology, Mohamed Boudiaf ( USTO-MB), Oran, Algeria
  • Department of Electrical Engineering, Laboratory of sustainable development of electrical energy (LDDEE), University of Science and Technology, Mohamed Boudiaf ( USTO-MB), Oran, Algeria
  • Department of Electrical Engineering, Laboratory of sustainable development of electrical energy (LDDEE), University of Science and Technology, Mohamed Boudiaf ( USTO-MB), Oran, Algeria
  • Department of Electrical Engineering, Laboratory of sustainable development of electrical energy (LDDEE), University of Science and Technology, Mohamed Boudiaf ( USTO-MB), Oran, Algeria
Bibliografia
  • [1] Chao-Lung, Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels, IEEE Transactions on power systems. (2005) ; pp. 1690–1699.
  • [2] R. Ponciroli, N.E. Stauff, J. Ramsey, F. Ganda, R.B. Vilim, An Improved Genetic Algorithm approach to the Unit Commitment/Economic Dispatch problem, IEEE Transactions on power systems, (2020)- ieeexplore.ieee.org
  • [3] Harish Pulluri, M. Vyshnavi, Patange Shraddha, B. Sai Priya, T. Sri Hari &Preeti , Genetic Algorithm with Multi-Parent Crossover Solution for Economic Dispatch with Valve Point Loading Effects, Innovations in Electrical and Electronics Engineering. (2020) ;PP 429–438
  • [4] Naama, H. Bouzeboudja, M. Lahdeb, Y. Ramdani, A Hybrid Tabu Search and Algorithm Genetic for Solving the Economic Dispatch Problem, Leonardo Journal of Sciences.(2013) ;pp. 29-36.
  • [5] Basu M. A simulated annealing-based goal attainment method for economic emission load dispatch of fixed head hydrothermal power systems. Electr Power Energy Syst (2005); PP. 147–153
  • [6] M. Venkatesh , Ramakrishna Raghutu, Economic load dispatch using simulated annealing algorithm, International Research Journal of Engineering and Technology (IRJET). (2015) ; pp. 1961-1964
  • [7] Venkatesh P, Gnanadass R, Padhy NP. Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints. IEEE Trans Power Syst (2003); PP. 688–697.
  • [8] Sanjay Kumar ,Vineet Kumar ,Nitish Katal ,Sanjay Kumar Singh ,Sumit Sharma ,and Pushpendra Singh, Multiarea Economic dispatch using evolutionary algorithms, Mathematical Problems in Engineering (2021).
  • [9] Yong Zhang , Dun-Wei Gong , Zhonghai Ding , A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch, Information Sciences 192 (2012) ;pp. 213–227
  • [10] Niknam T, Doagou Mojarrad H, Zeinoddini Meymand H. A new particle swarm optimization for non-convex economic dispatch. Eur Trans Electr Power (2011); pp. 656 –679.
  • [11] Aniruddha B, Pranab Kumar Ch. Solving economic emission load dispatch problems using hybrid differential evolution. Appl Soft Comput (2011); PP. 2526–2537.
  • [12] Jebaraj L, Venkatesan C, Soubache I, Application of diferential evolution algorithm in static and dynamic economic or emission dispatch problem: a review. Renew Sustain Energy Rev 77, (2017) ; pp. 1206–1220
  • [13] Normansyah, Akhdiyatul, Erick Radwitya, Hardiansyah, Cuckoo Search Algorithm for Environmental/Economic Dispatch Problem. Journal of Electrical and Electronics Engineering (IOSR-JEEE), (2017); pp. 59-63.
  • [14] Lili A. Wulandhari, Siti Komsiyah, Wisnu Wicaksono, Bat Algorithm Implementation on Economic Dispatch Optimization Problem. Procedia Computer Science 135 (2018); pp. 275– 282.
  • [15] Muhammad Saleh, Eko Sarwono, Hariyanto, Hardiansyah, Environmental/Economic Power Dispatch Considering Wind Power using Bat Algorithm, The International Journal of Engineering and Science (IJES), (2020) ; pp 54-60
  • [16] Aydin D, Özyön S, Yaşar C, Liao T, Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem, Int J Electr Power Energy Syst, (2014) ;pp. 144–153.
  • [17] Karaboga D, Basturk B, On the performance of artificial bee colony (ABC) algorithm, Appl Soft Comput, (2008). pp. 687– 697.
  • [18] Karaboga D, Basturk B, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J Glob Optim, (2007); pp. 459 – 471.
  • [19] B. Naama , H. Bouzeboudja, Y. Ramdani, A. Chaker, Hybrid approach to the economic dispatch problem using a genetic and a quasi-newton algorithms, Acta Electrotechnica et Informatica ,( 2008) ; pp. 31–35
  • [20] Yasar C, Özyön S, Temurtas H. Solution to environmental economic power dispatch problem composed of only thermal units by using genetic algorithm. Electrical and control volume. Turkey: (2008). PP. 105–109.
  • [21]Özyön S, Yasar C, Yılmaz A, Temurtas H. Solution to environmental economic power dispatch problems in hydrothermal power systems by using genetic algorithm. In: Proceeding 6th international conference on electrical and electronics engineering, (2009); pp. 387–391.
  • [22] Özyön S. The application of genetic algorithm to some environmental economic power dispatch problems. M.Sc. Thesis, Dumlupınar University; (2009); PP. 136.
  • [23] Goldberg David E. Genetic algorithms in search, optimization, and machine learning. Addison Wesley Publishing Company, Inc.; 1989.
  • [24] A.L. Devi, O.V. Krishna, Combined economic and emission dispatch using evolutionary algorithms – a case study, ARPN J. Eng. Appl. Sci. 3 (6) (2008) ;pp. 28–35.
  • [25] A.Y. Abdelaziz , E.S. Ali, S.M. Abd Elazim , Flower pollination algorithm to solve combined economic and emission dispatch problems, Engineering Science and Technology, an International Journal (2015).
  • [26] Mr. Manoj Kumar.T, Mr. Vinod.V.P, Mr. Asish John Mathew, Emission Constrained Economic Dispatch using Particle Swarm Optimization Technique, IJSRD - International Journal for Scientific Research & Development| Vol. 4, Issue 11, 2017 | ISSN (online) ; 2321-0613.
  • [27] Mr. Manoj Kumar. T, Multiobjective Particle Swarm Optimization for Environmental/Economic Power Dispatch, GRD Journals- Global Research and Development Journal for Engineering | Vol 2 | Issue 2 | January 2017 ISSN: 2455-5703.
  • [28] M. Basu, Economic environmental dispatch using multiobjective differential evolution, Int. J. Appl. Soft Comput. 11 (2011); pp. 2845–2853.
  • [29] E.D. Manteaw, N.A. Odero, Combined economic and emission dispatch solution using ABC_PSO hybrid algorithm with valve point loading effect, Int. J. Sci. Res. Publ. 2 (12) (2012) ; pp. 1–9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faaca597-64d0-4d44-bb0d-8d3b2c234af0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.