Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Właściwości fizykochemiczne i mechaniczne stali ferrytycznej Crofer 22 APU na interkonektory ogniw paliwowych SOFC
Języki publikacji
Abstrakty
The paper presents the results of investigations of the physicochemical and mechanical properties of the Crofer 22 APU steel designed for application in metallic interconnects forming the key components of solid oxide fuel cells (SOFCs). Microstructural and hardness studies of non-metallic inclusions and the matrix were carried out. Based on compression tests of raw Crofer 22 APU and the steel after 600 hrs of cyclic oxidation in air at 800°C, the composition of non-metallic inclusions and their influence on the strength properties of the steel were determined.
W pracy przedstawiono wyniki badań właściwości fizyko-chemicznych i mechanicznych stali Crofer 22 APU dedykowanego do zastosowań na interkonektory metaliczne będących kluczowym elementem ogniw paliwowych SOFC. Przeprowadzono badania mikrostruktury oraz twardości wydzieleń niemetalicznych i osnowy. Na podstawie testów ściskania stali wyjściowej oraz stali poddanej cyklicznemu utlenianiu przez 600 h w powietrzu w 800°C określono skład wytrąceń niemetalicznych oraz wykazano ich wpływ na parametry wytrzymałościowe stali.
Czasopismo
Rocznik
Tom
Strony
s. 47--57
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics
autor
- Faculty of Mathematics, Physics and Technical Science, Pedagogical University of Cracow
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics
autor
- Faculty of Geography and Biology, Pedagogical University of Cracow
autor
- Faculty of Mathematics, Physics and Technical Science, Pedagogical University of Cracow
Bibliografia
- [1] Weber A., Ivers-Tiffée E.: Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 127, 2004, pp. 273–283
- [2] Zhu W.Z., Deevi S.C.: Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering: A, 348, 2003, pp. 227–243
- [3] Kurokawa H., Kawamura K., Maruyama T.: Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient. Solild State Ionics, 168, 2004, pp. 13–21
- [4] Brylewski T.: Metaliczny interkonektor jako istotny element ogniwa paliwowego ze stałym elektrolitem tlenkowym SOFC. Ceramic Materials, 62, 3(2010), pp. 415–427
- [5] Zhu J.H., Zhang Y., Basu A., Lu Z.G., Paranthaman M., Lee D.F., Payzant E.A.: LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications. Surface and Coatings Technology, 177–178, 2004, pp. 65–72
- [6] Cabouro G., Caboche G., Chevalier S., Piccardo P.: Opportunity of metallic interconnects for ITSOFC: Reactivity and electrical property. Journal of Power Sources, 156, 2006, pp. 39–44
- [7] Miszczyk M., Dziekan E., Przybylski K., Brylewski T., Gaweł R.A., Kruk A.: Physicochemical properties of the materials in the system Crofer 22 APU La0,6Sr0,4Co0,2Fe0,8O3 on interconnectors for use in SOFC. Ceramic materials, 64, 1(2012), pp. 131–141 (in Polish)
- [8] Fergus J.W., Zhang J., Li X., Wilkinson D.P., Hui R.: Solid Oxide Fuel Cells Materials Properties and Performance. CRC Press, 2008
- [9] Crofer 22 APU – Material Data Sheet No. 4046. ThyssenKrupp VDM, 2010
- [10] Vander Voort G.F.: ASM Handbook: Volume 9: Metallography And Microstructures. ASM International, 2004
- [11] OliverW.C, PharrG.M.: An improved technique for Determining Hardness elastic modulus endusing load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), (1992), pp. 1564-1583
- [12] ChiuY-T., Lin Ch-K., Wu J-Ch.: High-temperature tensile and creep propertiesof a ferritic stainless steel for interconnect in solid oxide fuel cell. Journal of Power Sources, 196, 2011, pp. 2005-2012
- [13] Liśkiewicz T.: Hard coatings durability under fretting wear- autoreferat
- [14] Pierson H.O.: Handbookof refractory carbidesand nitrides: properties, characteristics, processing, and applications. Elsevier Science, 1996
- [15] Stone D.S., Yoder K.B., Sproul W.D.: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. Journal of Vacuum Science and Technology A, 9(4), 1991, pp. 2543-2547
- [16] www: Surface Solution Inc
- [17] Żurek Z., Brylewski T, Jaroń A., Chmura E.: Area specific resistance of the scale formed on Crofer 22APU ferritic steel in atmospheres containing SO2. Solid State lonics, 234, 2013 pp. 33-39
- [18] Yan H., Bib H., Lib X., Xua Z.: Microstructure and texture of Nb+Ti stabilized ferritic stainless steel. Materials Characterization, 59, 2008, pp. 1741-1746
- [19] Yan H., Bi H., Lib X., Xua Z.: Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging. Materials Characterization, 60, 2009, pp. 204-209
- [20] Abreu H.F.G., BrunoA.D.S., Tavares S.S.M., Santos R.P, Carvalho S.S.: Effectof high temper-ature annealing on texture and microstructure on an AISI-444 ferritic stainless steel. Materials Characterization, 57, 2006, pp. 342-347
- [21] Lula R.A.: Toughness of Ferritic Stainless Steels: A Symposium. ASTM International, 1980
- [22] Chiu Y-T, Lin Ch-K., Wu J-Ch.: High-temperature tensile and creep properties of a ferritic stainless steel for interconnect in solid oxide fuel cell. Journal of Power Sources, 196, 2011 pp. 2005-2012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faac8697-2c18-4a3b-a486-bdb6bfd05030