PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of the impact of the properties of dental wedge materials on functional features

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Defect of the interproximal wall of the tooth is filled with use the shaped matrix and wedge which seals bottom margin during filling. Better fit of the wedge and equalization of the pressure forces on the matrix is achieved by the compliance of the wedge structure through cuts and perforations and the use of silicone materials and unidirectionally expanded polytetrafluoroethylene (ePTFE). The work presents a methodology for model studies of the mechanics of dental wedges in order to evaluate and compare the impact of wedge materials on functional features. The hypothesis of the work was that the mechanical properties of ePTFE determine the effectiveness of the dental wedge. Design/methodology/approach: Effect of modulus of elasticity and friction coefficient of wedge and matrix materials on the functional features of the wedge was studied on the way Finite Element Analysis (FEA). Simulation included contact sliding between wedge and matrix what was simulated in nonlinear large displacements regime. The sealing evaluation criterion was the pressure distribution between the wedge and matrix below the lower edge of the defect. Displacement values were the criterion for the loss of convexity as a result of matrix deformation. Findings: The material for the wedge should be characterized by a low coefficient of friction, low elasticity (ensuring high compliance of the wedge) and at the same time the ability to large permanent deformations, which allows for plastic shaping of the matrix from the side of the defect in order to achieve the required wall convexity and the tangent point. Research limitations/implications: Results show tendency of phenomena in limitation to model simplification of the interdental gap and the ideal adhesion of the matrix to the tooth and linear elasticity of materials. Practical implications: The material that best meets the requirements is unidirectionally expanded polytetrafluoroethylene, which has one of the lowest coefficients of friction and very high plasticity necessary to shape the matrix from the inside of the cavity. Originality/value: Methodology of model study and criteria of functional characteristics of dental wedge was presented.
Rocznik
Strony
32--41
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Success Stairs dentistry Maciej Czerwiński, ul. Jana Dekerta 2d, 87-100 Toruń, Poland
autor
  • Success Stairs dentistry Maciej Czerwiński, ul. Jana Dekerta 2d, 87-100 Toruń, Poland
  • APIpharma Ltd. and Partners LP. based in Katowice, ul. Tadeusza Kościuszki 44/7, 40-040 Katowice, Poland
autor
  • Success Stairs dentistry Maciej Czerwiński, ul. Jana Dekerta 2d, 87-100 Toruń, Poland
Bibliografia
  • [1] The academy of prosthodontics, The glossary of prosthodontic terms, Journal of Prosthetic Dentistry 94/1 (2005) 10-92. DOI: https://doi.org/10.1016/j.prosdent.2005.03.013
  • [2] T.B. Sluder, Clinical dental anatomy, histology, physiology and occlusion, in: C.M. Studevant (ed.), The art and science of operative dentistry, Second Edition, McGraw-Hill, New York, 1985, 21.
  • [3] Success Stairs, Teflon Floss. Available online: https://www.youtube.com/watch?v=u16rST2H5sk (Access in: 22.11.2021).
  • [4] Ł. Reimann, J. Żmudzki, L.A. Dobrzański, Strength analysis of a three-unit dental bridge framework with the Finite Element Method, Acta of Bioengineering and Biomechanics 15/1 (2015) 51-59. DOI: https://doi.org/10.5277/ABB-00091-2014-02
  • [5] J. Żmudzki, W. Walke, W. Chladek, Influence of model discretization density in FEM numerical analysis on the determined stress level in bone surrounding dental implants, in: E. Piętka, J. Kawa (eds.), Information technologies in biomedicine, Advances in Soft Computing, vol. 47, Springer, Berlin, Heidelberg, 2008, 559-567. DOI: https://doi.org/10.1007/978-3- 540-68168-7_64
  • [6] J. Żmudzki, G. Chladek, K. Panek, P. Lipiński, Finite element analysis of adolescent mandible fracture occurring during accidents, Archives of Metallurgy and Materials 65/1 (2020) 65-72. DOI: https://doi.org/10.24425/amm.2019.131097
  • [7] K. Młynarek, J. Żmudzki, Distribution of forces on supporting teeth in the midpalatal expander during "Hyrax" screw pre-load, Journal of Achievements in Materials and Manufacturing Engineering 93/1-2 (2019) 26-31. DOI: https://doi.org/10.5604/01.3001.0013.4138
  • [8] J. Żmudzki, G. Chladek, J. Kasperski, Silicone attachment for avoidance of bone tissue overloading in single implant-retained denture, Archives of Materials Science and Engineering 51/2 (2011) 107-115.
  • [9] J. Żmudzki, G. Chladek, P. Malara, L.A. Dobrzański, M. Zorychta, K. Basa, The simulation of mastication efficiency of the mucous-borne complete dentures, Archives of Materials Science and Engineering 63/2 (2013) 75-86.
  • [10] J. Żmudzki, G. Chladek, C. Krawczyk, Relevance of Tongue Force on Mandibular Denture Stabilization during Mastication, Journal of Prosthodontics 28/1 (2019) e27-e33. DOI: https://doi.org/10.1111/jopr.12719
  • [11] J. Żmudzki, G. Chladek, P. Malara, Use of finite element analysis for the assessment of biomechanical factors related to pain sensation beneath complete dentures during mastication, The Journal of Prosthetic Dentistry 120/6 (2018) 934-941. DOI: https://doi.org/10.1016/j.prosdent.2018.02.002
  • [12] J. Żmudzki, G. Chladek, J. Kasperski, L.A. Dobrzański, One versus two implant-retained dentures: comparing biomechanics under oblique mastication forces, Journal of Biomechanical Engineering 135/5 (2013) 054503. DOI: https://doi.org/10.1115/1.4023985
  • [13] R. Fuhrmann, C. Grave, P. Diedrich, In vitro evaluation of a measurement method to analyze the interdental, mesially directed force, Journal of Orofacial Orthopedics/ Fortschritte der Kieferorthopädie 59 (1998) 362-370. DOI: https://doi.org/10.1007/BF01299772
  • [14] C. Deinhammer, C. Wallinger, M. Brandner, B. Buchgraber, P. Staedtler, A measurement device for the comparative evaluation of proximal teeth contact strengths, Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference, Hangzhou, China, 2011, 1-5. DOI: https://doi.org/10.1109/imtc.2011.5944302
  • [15] H.S. Kim, H.J. Na, H.J. Kim, D.W. Kang, S.H. Oh, Evaluation of proximal contact strength by postural changes, Journal of Advanced Prosthodontics 1/3 (2009) 118-123. DOI: https://doi.org/10.4047/jap.2009.1.3.118
  • [16] J.W. Osborn, An investigation into the interdental forces occurring between the teeth of the same arch during clenching the jaws, Archives of Oral Biology 5/3-4 (1961) 202-211. DOI: https://doi.org/10.1016/0003-9969(61)90058-9
  • [17] K. Kasahara, H. Miura, M. Kuriyama, H. Kato, S. Hasegawa, Observations of interproximal contact relations during clenching, The International Journal of Prosthodontics 13/4 (2000) 289-294.
  • [18] A.D. Vardimon, E. Matsaev, M. Lieberman, T. Brosh, Tightness of dental contact points in spaced and non-spaced permanent dentitions, European Journal of Orthodontics 23/3 (2001) 305-314. DOI: https://doi.org/10.1093/ejo/23.3.305
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faa8925d-f867-4d20-82ed-d55f885265ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.