PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The experimental and theoretical investigations of damage development and distribution in double-forged tungsten under plasma irradiation-initiated extreme heat loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
PLASMA-2015 International Conference on Research and Applications of Plasmas (7-11 September 2015 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The influence of extreme heat loads, as produced by a multiple pulses of non-homogeneous flow of slow plasma (0.1–1 keV) and fast ions (100 keV), on double-forged tungsten (DFW) was investigated. For generation of deuterium plasma and fast deuterons, plasma-focus devices PF-12 and PF-1000 are used. Depending on devices and conditions, the power flux density of plasma varied in a range of 107–1010 W/cm2 with pulse duration of 50–100 ns. Power flux density of fast ions was 1010–1012 W/cm2 at the pulse duration of 10–50 ns. To achieve the combined effect of different kind of plasmas, the samples were later irradiated with hydrogen plasma (105 W/cm2, 0.25 ms) by a QSPA Kh-50 plasma generator. Surface modification was analysed by scanning electron microscopy (SEM) and microroughness measurements. For estimation of damages in the bulk of material, an electrical conductivity method was used. Investigations showed that irradiation of DFW with multiple plasma pulses generated a mesh of micro- and macrocracks due to high heat load. A comparison with single forged tungsten (W) and tungsten doped with 1% lanthanum-oxide (WL10) reveals the better crack-resistance of DFW. Also, sizes of cells formed between the cracks on the DFW’s surface were larger than in cases of W or WL10. Measurements of electrical conductivity indicated a layer of decreased conductivity, which reached up to 500 µm. It depended mainly on values of power flux density of fast ions, but not on the number of pulses. Thus, it may be concluded that bulk defects (weakening bonds between grains and crystals, dislocations, point-defects) were generated due to mechanical shock wave, which was generated by the fast ions flux. Damages and erosion of materials under different combined radiation conditions have also been discussed.
Czasopismo
Rocznik
Strony
169--177
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • School of Natural Sciences and Health, Tallinn University, 10120 Tallinn, Estonia, Tel.: +372 640 9404, Fax: +372 640 9118
autor
  • School of Natural Sciences and Health, Tallinn University, 10120 Tallinn, Estonia, Tel.: +372 640 9404, Fax: +372 640 9118
autor
  • School of Natural Sciences and Health, Tallinn University, 10120 Tallinn, Estonia, Tel.: +372 640 9404, Fax: +372 640 9118
autor
  • School of Natural Sciences and Health, Tallinn University, 10120 Tallinn, Estonia, Tel.: +372 640 9404, Fax: +372 640 9118
autor
  • Institute of Plasma Physics and Laser Microfusion 23 Hery Str., 01-497 Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion 01-497 Warsaw, Poland
  • A. A. Baikov Institute of Metallurgy and Material Science RAS, Moscow 119991, Russia and A. Salam International Centre for Theoretical Physics, I-34151 Trieste, Italy
autor
  • A. A. Baikov Institute of Metallurgy and Material Science RAS, Moscow 119991, Russia
  • A. A. Baikov Institute of Metallurgy and Material Science RAS, Moscow 119991, Russia
  • Institute of Plasma Physics, NSC KIPT, 61108 Kharkov, Ukraine
autor
  • Faculty of Mechanical Engineering, Tallinn University of Technology, Tallinn 19086, Estonia
Bibliografia
  • 1. Garkusha, I. E., Makhlaj, V. A., Aksenov, N. N., Byrka, O. V., Malykhin, S. V., Pugachov, A. T., Bazylev, B., Landman, I., Pinsuk, G., Linke, J., Wirtz, M., Sadowski, M. J., & Skladnik-Sadowska, E. (2015). High power plasma interaction with tungsten grades in ITER relevant conditions. J. Phys. Conf. Ser., 591, 012030.
  • 2. Rieth, M., Dudarev, S. L., Gonzales de Vicente, S. M., Aktaa, J., Ahlgren, T., Antusch, S., Armstronga, D. E. J., Balden, M., Baluc, N., Barthe, M. -F., Basuki, W. W., Battabyal, M., Becquart, C. S., Blagoeva, D., Boldyryeva, H., Brinkmann, J., Celino, M., Ciupinski, L., Correia, J. B., De Backer, A., Domain, C., Gaganidze, E., Garcia-Rosales, C., Gibsona, J., Gilbert, M. R., Giusepponi, S., Gludovatz, B., Greuner, H., Heinola, K., Höschen, T., Hoffmann, A., Holstein, N., Koch, F., Krauss, W., Li, H., & Lindig, S. (2013). A brief summary of the progress on the EFDA tungsten materials program. J. Nucl. Mater., 442(Suppl. 1), S173–S180.
  • 3. Hirai, T., Escourbiac, F., Carpentier-Chouchana, S., Fedosov, A., Ferrand, L., Jokinen, T., Komarov, V., Kukushkin, A., Merola, M., Mitteau, R., Pitts, R. A., Shu, W., Sugihara, M., Riccardi, B., Suzuki, S., & Villari, R. (2013). ITER tungsten divertor design development and qualification program. Fusion Eng. Des., 88, 1798–180.
  • 4. Pitts, R. A., Carpentier, S., Escourbiac, F., Hirai, T., Komarov, V., Kukushkin, A. S., Lisgo, S., Loarte, A., Merola, M., Mitteau, R., Raffray, A. R., Shimada, M., & Stangeby, P. C. (2011). Physics basis and design of the ITER plasma-facing components. J. Nucl. Mater., 415, S957–S964.
  • 5. Cicuttin, A., Crespo, M. L., Gribkov, V. A., Niemela, J., Tuniz, C., Zanolli, C., Chernyshova, M., Demina, E. D., Latyshev, S. V., Pimenov, V. N., & Talab, A. A. (2015). Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device. Nucl. Fusion, 55(6), 063037.
  • 6. Lemahieu, N., Linke, J., Pintsuk, G., Van Oost, G., Wirtz, M., & Zhou, Z. (2014). Performance of yttrium doped tungsten under ‘edge localized mode’-like loading conditions. Phys. Scr., T159, 014035.
  • 7. Linke, J., Loewenhoff, T., Massaut, V., Pintsuk, G., Ritz, G., Rödig, M., Schmidt, A., Thomser, C., Uytdenhouwen, I., Vasechko, V., & Wirtz, M. (2011). Performance of different tungsten grades under transient thermal loads. Nucl. Fusion, 51, 073017.
  • 8. Qu, S., Gao, S., Yuan, Y., Li, C., Lian, Y., Liu, X., & Liu, W. (2015). Effects of high magnetic field on the melting behavior of W-1wt%La2O3 under high heat flux. J. Nucl. Mater., 463, 189–192.
  • 9. Shirokova, V., Laas, T., Ainsaar, A., Priimets, J., Ugaste, U., Väli, B., Gribkov, V. A., Maslyaev, S. A., Demina, E. V., Dubrovsky, A. D., Pimenov, V. N., Prusakova, M. D., & Mikli, V. (2014). Armor materials’ behavior under repetitive dense plasma shots. Phys. Scr., T161, 014045.
  • 10. Shirokova, V., Laas, T., Ainsaar, A., Priimets, J., Ugaste, U., Demina, E. V., Pimenov, V. N., Maslyaev, S. A., Dubrovsky, A. V., Gribkov, V. A., Scholz, M., & Mikli, V. (2013). Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterum plasma shots. J. Nucl. Mater., 435, 181–188.
  • 11. Huber, A., Arakcheev, A., Sergienko, G., Steudel, I., Wirtz, M., Burdakov, A. V., Coenen, J. W., Kreter, A., Linke, J., Mertens, Ph., Philipps, V., Pintsuk, G., Reinhart, M., Samm, U., Shoshin, A., Schweer, B., Unterberg, B., & Zlobinski, M. (2014). Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tunsgten. Phys. Scr., T159, 014005.
  • 12. Sheng, H., Van Oost, G., Zhurkin, E., Terentyev,, D., Dubinko, V. I., Uytdenhouwen, I., & Vleugels, J. (2014). High temperature strain hardening behavior in double forged and potassium doped tungsten. J. Nucl. Mater., 444, 214–219.
  • 13. Fujitsuka, M., Shinno, H., Tanabe, T., & Shiraishi, H. (1991). Thermal shock experiments for carbon materials by electron beams. J. Nucl. Mater., 17A, 189–192.
  • 14. Riccardo, V., Loarte, A., & JET EFDA Contributors. (2005). Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET. Nucl. Fusion, 45, 1427–1438.
  • 15. Bernard, A., Bruzzone, H., Choi, P., Chuaqui, H., Gribkov, V., Herrera, J., Hirano, K., Krejci, A., Lee, S., Luo, C., Mezzetti, F., Sadowski, M., Schmidt, H., Wone, K., Wang, C. S., & Zoita, V. (1998). Scientific status of plasma focus research. J. Moscow Phys. Soc., 8, 93–170.
  • 16. Gribkov, V. A. (2015). Physical processes taking place in dense plasma focus devices at the interaction of hot plasma and fast ion streams with materials under test. Plasma Phys. Contr. Fusion, 57, 065010.
  • 17. Pimenov, V. N., Demina, E. V., Maslyaev, S. A., Ivanov, L. I., Gribkov, V. A., Dubrovsky, A. V., Ugaste, U., Laas, T., Scholz, M., Miklaszewski, R., Kolman, B., & Tartari, A. (2008). Damage and modification of materials produced by pulsed ion and plasma streams in Dense Plasma Focus device. Nukleonika, 53(3), 111–121.
  • 18. Gribkov, V. A., Banaszak, A., Bienkowska, B., Dubrovsky, A. V., Ivanova-Stanik, I., Jakubowski, L., Karpinski, L., Miklaszewski, R. A., Paduch, M., Sadowski, M. J., Scholz, M., Szydlowski, A., & Tomaszewski, K. (2007). Plasma dynamics in the PF-1000 device under full-energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives. J. Phys. D-Appl. Phys., 40, 3592–3607.
  • 19. Gribkov, V. A., Bienkowska, B., Borowiecki, M., Dubrovsky, A. V., Ivanova-Stanik, I., Karpinski, L., Miklaszewski, R. A., Paduch, M., Scholz, M., & Tomaszewski, K. (2007). Plasma dynamics in PF-1000 device under full-scale energy storage: I. Pinch dynamics, shock-wave diffraction, and inertial electrode. J. Phys. D-Appl. Phys., 40, 1977–1989.
  • 20. Makhlaj, V. A., Garkusha, I. E., Aksenov, N. N., Bazylev, B., Landman, I., Linke, J., Malykhin, S. V., Pugachov, A. T., Sadowski, M. J., Skladnik-Sadowska, E., & Wirtz, M. (2014). Tungsten damage and melt losses under plasma accelerator exposure with ITER ELM relevant conditions. Phys. Scr., T159, 014024.
  • 21. Pokatilov, A., Parker, M., Kolyshkin, A., Märtens, O., & Kübarsepp, T. (2013). Inhomogeneity correction in calibration of electrical conductivity standards. Measurement, 46, 1535–1540.
  • 22. Gribkov, V. A., Paduch, M., Zielinska, R., Laas, T., Shirokova, V., Väli, B., Paju, J., Pimenov, V. N., Demina, E. V., Latyshev, S. V., Niemela, J., Crespo, M. -L., Cicuttin, A., Talab, A. A., Pokatilov, A., & Parker, M. (2015). Parallel investigation of double forged pure tungsten samples irradiated in three DPF devices. J. Nucl. Mater., 463, 341–346.
  • 23. Latyshev, S. V., Gribkov, V. A., Maslyeav, S. A., Pimenov, V. N., Paduch, M., & Zielinska, E. (2015). Generation of shock waves in materials science experiments with dense plasma focus device. Inorg. Mater.-Appl. Res., 6(2), 91–95.
  • 24. Ankudinov, A. V., Voronin, A. V., Gusev, V. K., Gerasimenko, Ya. A., Demina, E. V., Prusakova, M. D., & Sud’enkov, Yu. V. (2014). Infl uence of a plasma jet at different types of tungsten. Techn. Phys., 59, 346–352.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faa5cd88-7e9e-4762-97a4-3ee8af1618e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.