Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the modeling, control and simulation of an electric vehicle with four in-wheel 15 kw induction motors drive 4WDEV controlled by a direct torque control DTC strategy, where two control techniques are presented and compared for controlling the electric vehicle speed: the first one is based on a classical PI controller while the second one is based on a fuzzy logic controller (FLC). The aim is to evaluate the impact of the proposed FLC controller on the efficiency of the 4WDEV taking into account vehicle dynamics performances, autonomy and battery power consumption. When the classical controller can’t ensure the electric vehicle stability in several road topology situations. To show the efficiency of the proposed new control technique on the traction system by 4WDEV. The vehicle has been tested in different road constraints: straight road, sloping road and curved road to the right and left using the Matlab / Simulink environment. The analysis and comparison of the simulation results of FLC and PI controllers clearly show that the FLC ensures better performances and gives a good response without overshoot, zero steady state error and high load robustness rejection, compared to the PI controller which is present an overshoot equal 7.3980% and a rise time quite important (0.2157 s with PI controller and 0.1153 s with FLC). As well as the vehicle range has been increased by about 10.82 m throughout the driving cycle and that the energy consumption of the battery has been reduced by about 1.17% with FLC.
Rocznik
Tom
Strony
43--54
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Faculty of Sciences and Technology, Department of Electrical Engineering Bechar. University B.P 417 Bechar (08000), Algeria
autor
- Faculty of Sciences and Technology, Department of Electrical Engineering Bechar. University B.P 417 Bechar (08000), Algeria
autor
- Faculty of Sciences and Technology, Department of Electrical Engineering Bechar. University B.P 417 Bechar (08000), Algeria
autor
- Faculty of Sciences and Technology, Department of Electrical Engineering Bechar. University B.P 417 Bechar (08000), Algeria
autor
- Department of Electrical Engineering, Moncton University (Canada)
Bibliografia
- [1] Kim J., Jung J., and Nam K., “Dual-inverter control strategy for high-speed operation of EV induction motors”, IEEE Trans. Ind. Electronics, 2004, vol. 51, no. 1, pp. 312–320. DOI: 10.1109/TIE.2004.825232.
- [2] Gregory A. H., Kamal Y. T., “Modeling and simulation of a hybrid-electric vehicle drive train”. In: Proceedings of the American Control Conference, 1997, pp. 636–640.
- [3] Baba A., “Optimisation du flux dans la machine à induction par une commande vectorielle: minimization des pertes”, Thèse de Doctorat en Génie Electrique Pierre & Marie Curie Paris, 5–7 Janvier, 1997 (in French).
- [4] Triqui N., “Motorisation Asynchrone pour Véhicule Electrique,” Institut Polytechnique de Lorraine Nancy Paris, 1997 (in French). [5] Casadei D., Profumo F., and Tani A., “FOC and DTC: Two viable schemes for induction motor torque control,” IEEE Trans of Power Electronics (S0885 – 993), 2002, vol. 17, pp. 779–787.
- [6] Buja G. S., Kaźmierkowski M. P., “Direct Torque Control of PWM Inverter Fed. AC Motors–A survey,” IEEE Trans Power Electronics, vol. 51, 2004.DOI: 10.1109/TIE.2004.831717.
- [7] Takahachi I., Noguchi T., “A New Quick-response and High Efficiency Control Strategy of an Induction Motor” , IEEE Transaction on Industrial Applications, 1986, vol. 5, pp. 820–827.
- [8] Depenbrock M., “Direct self-control of inverter-fed machine”, IEEE Trans. Power Electron, 1988, vol. 3, pp. 420–429.
- [9] Heath H., Seth S. R., “Speed-Sensorless Vector Torque Control of Induction Machines Using a Two-Time-Scale Approach” , IEEE Transactions on Industry Applications, 1998 January--February, vol. 34, no. 1.
- [10] Kaźmierkowski M.P., “Control Strategies for PWM Rectifier/Inverter-Fed Induction Motors”, Industrial Electronics ISIE Proceedings of the 2000 International Symposium IEEE, 2000, vol. 1, pp. TU15-TU23.
- [11] Ghezouani A., Gasbaoui B., Ghouili J., Benayed A. A., “An Efficiency No Adaptive Backstepping Speed Controller Based Direct Torque Control”, Journal of Automation, Mobile robotics & Intelligent Systems, 2017, vol. 11, no. 1, pp. 56–63. DOI: 10.14313/JAMRIS_1-2017/8.
- [12] Husain I., et al., “Design, modeling and simulation of an electric vehicle system”, SAE Technical Paper Series, 1999, pp. 01–1149.
- [13] Ehsani M., et al., “Propulsion system design of electric and hybrid vehicle”, IEEE Trans. Ind. Electron, 1997, vol.45, pp. 19–27.
- [14] Gillespice T., “Fundamentals of vehicle dynamics”, Society of Automotive Engineers, ISBN 1-56091-199-9.
- [15] Hori.Y., “Future Vehicle Driven by Electricity and Control – Research on Four-Wheel-Motored UOT Electric March II,” IEEE Transactions on Industrial Electronics, 2004, vol. 51, pp. 954–962.
- [16] Aissaoui H., Abid M., Tahour A., and Zeblah A., “A Fuzzy Logic Controller for Synchronous Machine,” Journal of Electrical Engineering, 2007, vol. 58, no. 5, pp. 285–290.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faa52058-bcff-4927-b9af-a9455990f33e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.