PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membrane separation techniques : removal of inorganic and organic admixtures and impurities from water environment : review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Membranowe techniki separacji : usuwanie domieszek i zanieczyszczeń nieorganicznych i organicznych ze środowiska wodnego
Języki publikacji
EN
Abstrakty
EN
Introduction and development of membrane techniques in the production of drinking water and purifi cation of wastewaters, in the last 40 years, was important stage in the fi eld of water treatment effectiveness. Desalination of sea and brackish water by RO is an established way for drinking water production. Signifi cant improvements in design of RO, the application of alternative energy sources, modern pretreatment and new materials have caused the success of the process. NF is the method of water softening, because NF membranes can retain di- and multivalent ions, but to a limited extend monovalent. Drinking water containing viruses, bacteria and protozoa, as well as other microorganisms can be disinfected by means of UF. Viruses are retained by UF membranes, whereas bacteria and protozoa using both UF and MF membranes. For the removal of NOM it is possible to use direct NF or integrated systems combining UF or MF with coagulation, adsorption and oxidation. The use of NF, RO and ED, in the treatment of water containing micropollutants for drinking and industrial purposes, can provide more or less selective removal of the pollutants. The very important are disinfection byproducts, residue of pharmaceuticals and endocrine disrupting compounds. For endocrine disrupting compounds, special attention is paid onto polycyclic aromatic hydrocarbons and surface-active substances, chlorinated pesticides, phthalates, alkylphenols, polychlorinated biphenyls, hormones, synthetic pharmaceuticals and other substances disposed to the environment. The application of MF and UF in the removal of inorganic and organic micropollutants is possible in integrated systems with: coagulation, adsorption, complexion with polymers or surfactants and biological reactions.
PL
Zanieczyszczenia występujące w ujmowanych wodach, powodują, że skuteczne oczyszczanie jest kłopotliwe, a układ (schemat technologiczny) oczyszczania powinien być opracowywany indywidualnie dla danej wody na podstawie badań technologicznych. Aby zapewnić wymaganą jakość wody do picia bezpiecznych dla zdrowia i życia konsumentów, często niezbędne jest stosowanie niekonwencjonalnych i wysokoefektywnych procesów, mimo podwyższenia kosztów i potrzeby bardzo starannej i profesjonalnej eksploatacji układu oczyszczania wody. Ponadto, niedogodności związane z tradycyjnym oczyszczaniem wód naturalnych oraz zmieniające się podejście, co do koncepcji uzdatniania wód dla celów konsumpcyjnych, przede wszystkim wzrastające wymagania odnośnie jakości wody do picia, stwarzają możliwości zastosowania nowych technik separacji, wśród których metody membranowe mają największe zalety i możliwości i są obecnie brane pod uwagę jako procesy alternatywne. W uzdatnianiu wody i oczyszczaniu ścieków stosuje się przede wszystkim techniki membranowe, których siłą napędową jest różnica ciśnień po obu stronach membrany, ale brane są pod uwagę też inne procesy jak elektrodializa, perwaporacja, destylacja membranowa i membrany ciekłe. Wybór odpowiedniego procesu membranowego zależy od zakresu wielkości występujących i usuwanych z wody zanieczyszczeń i domieszek. Techniki membranowe mogą być stosowane do usuwania zanieczyszczeń z wody jako procesy samodzielne, lub w połączeniu z uzupełniającymi procesami jednostkowymi, tworząc systemy hybrydowe. W pracy omówiono możliwości wykorzystania technik membranowych w uzdatnianiu wód naturalnych. Odwrócona osmoza zatrzymuje jony jednowartościowe i większość związków organicznych małocząsteczkowych i jest stosowana do odsalania wód oraz do usuwania jonów azotanowych i mikrozanieczyszczeń organicznych. Membrany nanofiltracyjne zatrzymują koloidy, szereg związków organicznych małocząsteczkowych oraz jony dwuwartościowe; można je zatem zastosować do zmiękczania wody i usuwania mikrozanieczyszczeń organicznych. Ultrafiltracja i mikrofiltracja stanowią barierę dla substancji rozproszonych i mikroorganizmów i dlatego można je stosować do klarowania i dezynfekcji wody oraz jako metoda usuwania mętności wody. Procesy hybrydowe obejmujące techniki membranowe stosuje się do uzdatniania wody do picia w połączeniu z ozonowaniem, koagulacją, adsorpcją na węglu aktywnym do usuwania niżej cząsteczkowych związków organicznych lub w bioreaktorach do usuwania azotanów.
Rocznik
Strony
4--19
Opis fizyczny
Bibliogr. 100 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Bibliografia
  • 1. AbKadir, M.Z.A., Rafeeu, Y & Adam, N.M. (2010). Prospective scenarios for the full solar energy development in Malaysia, Renewable and Sustainable Energy Reviews, 14, pp. 3023-3031, DOI: 10.1016/j.rser.2010.07.062.
  • 2. Al-Karaghouli, A. & Kazmerski, L.L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable and Sustainable Energy Reviews, 24, pp. 343-356, DOI: 10.1016/j.rser.2012.12.064.
  • 3. Alvarado, L., Ramirez, A. & Rodríguez-Torres, I. (2009). Cr(VI) removal by continuous electrodeionization: Study of its basic technologies, Desalination, 249, pp. 423-428, DOI: 10.1016/j.desal.2009.06.051.
  • 4. Ang, W.L., Mohammad, A.W., Hilal, N. & Leo, C.P. (2015). A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants, Desalination, 363, pp. 2-18, DOI: 10.1016/j.desal.2014.03.008.
  • 5. Anim-Mensah, A.R., Krantz, W.B. & Govind, R. (2008). Studies on polymeric nanofiltration-based water softening and the effect of anion properties on the softening process, European Polymer Journal, 44, pp. 2244-2252, DOI: 10.1016/j.eurpolymj.2008.04.036.
  • 6. Aroua, M.K., Zuki, F.M. & Sulaiman, N.M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration, Journal of Hazardous Materials, 147, pp. 752-758, DOI: 10.1016/j.jhazmat.2007.01.120.
  • 7. AWWA (2005). Microfiltration and ultrafiltration membranes for drinking water, American Water Works Association, AWWA (USA), Denver.
  • 8. Bakalár, T., Búgel, M. & Gajdošová, L. (2009). Heavy metal removal using reverse osmosis, Acta Montanistica Slovaca, 14, pp. 250-253.
  • 9. Barceló, D., Petrovic, M. & Radjenovic, J. (2009). Treating emerging contaminants (pharmaceuticals) in wastewater and drinking water treatment plants, Technological perspectives for rational use of water resources in the Mediterranean Region, Options MéditerranéennesA, 88, pp. 133-140.
  • 10. Bodzek, M. & Konieczny, K. (2007). Application of membrane processes in water treatment - state of art, Polish Journal of Environmental Studies, 16, 2A, pp. 154-159.
  • 11. Bodzek, M. & Konieczny, K. (2005). Application of membrane processes in water treatment, Oficyna Wydawnicza Projprzem-Eko, Bydgoszcz. (in Polish)
  • 12. Bodzek, M. & Konieczny, K. (2006). Membrane processes in water treatment - State of art, Inżynieria i Ochrona Środowiska, 9, pp. 129-159.
  • 13. Bodzek, M. & Konieczny, K. (2010). The use of membrane techniques in drinking water treatment. Part. I. Removal of inorganic compounds, Technologia Wody, 1, 03, pp. 9-21. (in Polish)
  • 14. Bodzek, M. & Konieczny, K. (2011a). Removal of inorganic contaminants from aquatic environment using membrane methods, Seidel-Przywecki, Warszawa, Poland. (in Polish)
  • 15. Bodzek, M. & Konieczny, K. (2011b). Membrane techniques in the removal of inorganic anionic micropollutants from water environment - state of the art, Archives of Environmental Protection, 37, 2, pp. 15-29.
  • 16. Bodzek, M. & Konieczny, K. (2017). Membrane techniques in the treatment of geothermal water for fresh and potable water production, in: Geothermal Water Management, Bundschuh, J. & Tomaszewska, B. (Eds.). CRC Press/Balkema, Taylor and Francis Group, Ch. 8, pp. 157-231.
  • 17. Bodzek, M. & Konieczny, K. (2018). Membranes in organic micropollutants removal, Current Organic Chemistry, 22, pp. 1070-1102, DOI: 10.2174/1385272822666180419160920.
  • 18. Bodzek, M. (1999). Membrane techniques in wastewater treatment, in: Water management purification and conservation in arid climates. Vol 2: Water purification, Goosen, I.M.F.A. & Shayya, W.H. (Eds.). Technomic Publishing, Lancaster-Basel, pp. 121-184.
  • 19. Bodzek, M. (2012). Removal of metals from water environment by means of membrane processes - State of art, Monographs of Environmental Engineering Committee of Polish Academy of Sciences, 66, pp. 305-313. (in Polish)
  • 20. Bodzek, M. (2015). Membrane technologies for the removal of micropollutants in water treatment, in: Advances in membrane technologies for water treatment: materials, processes and applications, Basile, A., Csasano, A. & Rastogi, N.K. (Eds.). Elsevier Science, Woodhead Publishing Ltd., Cambridge 2015, pp. 465-515, DOI: 10.1016./B978-1-78242-121-4.00015-0.
  • 21. Bodzek, M., Koter, S. & Wesołowska, K. (2002). Application of membrane techniques in water softening process, Desalination, 145, pp. 321-327.
  • 22. Bodzek, M., Dudziak, M. & Luks-Betlej, K. (2004). Application of membrane techniques to water purification. Removal of phthalates, Desalination, 162, pp. 121-128, DOI: 10.1016/ S0011-9164(04)00035-9.
  • 23. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection - review, Archives of Environmental Protection, 45, pp. 3-18, DOI: 10.24425/aep.2019.126419.
  • 24. Chalatip, R., Chawalit, R. & Nopawan, R. (2009). Removal of haloacetic acids by nanofiltration, Journal of Environmental Sciences, 21, pp. 96-100, DOI: 10.1016/S1001-0742(09)60017-6.
  • 25. Chen, D. & Chen, Q. (2016). Virus retentive filtration in biopharmaceutical manufacturing, PDA Letters, pp. 20-22.
  • 26. Chung, T.-S., Zhang, S., Wang, Y.K., Su, J. & Ling, M.M. (2012). Forward osmosis processes: Yesterday, today and tomorrow, Desalination, 287, pp. 78-81, DOI: 10.1016/j.desal.2010.12.019.
  • 27. Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N. & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Research, 39, pp. 4797-4807, DOI: 10.1016/j.watres.2005.09.015.
  • 28. Crespo, J.G., Velizarov, S. & Reis, M.A. (2004). Membrane bioreactors for the removal of anionic micropollutants from drinking water, Current Opinion in Biotechnology, 15, pp. 463-468, DOI: 10.1016/j.copbio.2004.07.001.
  • 29. Dilek, C., Ozbelge, H.O., Bicak, N. & Yilmaz, L. (2002). Removal of boron from aqueous solution by continuous polymer enhanced-ultrafiltration by polyvinyl alcohol, Separation Science and Technology, 37, pp. 1257-1271, DOI: 10.1081/SS-120002610.
  • 30. Dudziak, M. (2013). Retention of mycoestrogens with industrial nanofiltration modules, Desalination and Water Treatment, 51, pp. 4157-4161, DOI: 10.1080/19443994.2013.768012.
  • 31. Dudziak, M. & Bodzek, M. (2008). Removal of xenoestrogens from water during reverse osmosis and nanofiltration effect of selected phenomena on separation of organic micropollutants, Architecture Civil Engineering Environment, 1, 3, pp. 95-101.
  • 32. Dudziak, M. & Bodzek, M. (2010). A study of selected phytoestrogens retention by reverse osmosis and nanofiltration membranes - the role of fouling and scaling, Chemical Papers, 64, 2, pp. 139-146, DOI: 10.2478/s11696-009-0072-0.
  • 33. El-Ghonemy, A.M.K. (2012). Water desalination systems powered by renewable energy sources: Review, Renewable and Sustainable Energy Reviews, 16, pp. 1537-1556, DOI: 10.1016/j. rser.2011.11.002.
  • 34. Eltawil, M.A., Zhengming, Z. & Yuan, L. (2009). A review of renewable energy technologies integrated with desalination systems, Renewable and Sustainable Energy Review, 13, pp. 2245-2262, DOI: 10.1016/j.rser.2009.06.011.
  • 35. Fatin-Rouge, N., Dupont, A., Vidonne, A., Dejeu, J., Fievet, P. & Foissy, A. (2006). Removal of some divalent cations from water by membrane-filtration assisted with alginate, Water Research, 40, pp. 1303-1309, DOI: 10.1016/j.watres.2006.01.026.
  • 36. Fritzmann, C., Löwenberg, J., Wintgens, T. & Melin, T. (2007). State-of-the-art of reverse osmosis desalination, Desalination, 216, pp. 1-76, DOI: 10.1016/j.desal.2006.12.009.
  • 37. Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review, Journal of Environmental Management, 92, pp. 407-418, DOI: 10.1016/j.jenvman.2010.11.011.
  • 38. Ghaffour, N., Missimer, T.M. & Amy, G.L. (2013). Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability, Desalination, 309, pp. 197-207, DOI: 10.1016/j.desal.2012.10.015.
  • 39. Ghizellaoui, S., Chibani, A. & Ghizellaoui, S. (2005). Use of nanofiltration for partial softening of very hard water, Desalination, 179, pp. 315-322, DOI: 10.1016/j.desal.2004.11.077.
  • 40. Gorenflo, A., Valazquez-Padron, D. & Frimmel, F.H. (2003). Nanofiltration of a German groundwater of high hardness and NOM content: performance and costs, Desalination, 151, pp. 253-265, DOI: 10.1016/S0011-9164(02)01018-4.
  • 41. Gryta, M. (2012). Effectiveness of water desalination by membrane distillation process, Membranes, 2, pp. 415-429, DOI: 10.3390/ mbranes2030415.
  • 42. Halpern, D.F., McArdle, J. & Antrim, B. (2005). UF pretreatment for SWRO: pilot studies, Desalination, 182, pp. 323-332, DOI: 10.1016/j.desal.2005.02.031.
  • 43. Heberer, T. & Feldmann, D. (2008). Removal of pharmaceutical residues from contaminated raw water sources by membrane filtration, in: Pharmaceutical in the Environment, Berlin- Heidelberg, Springer, pp. 427-453.
  • 44. Helal, A.M. (2009). Hybridization - a new trend in desalination, Desalination and Water Treatment, 3, pp. 120-135, DOI: 10.5004/dwt.2009.263.
  • 45. Homayoonfal, M., Akbari, A. & Mehrnia, M.R. (2010). Preparation of polysulfone nanofiltration membranes by UV-assisted grafting polymerization for water softening, Desalination, 263, pp. 217-225, DOI: 10.1016/j.desal.2010.06.0621.
  • 46. Izadpanah, A.A. & Javidnia, A. (2012). The ability of a nanofiltration membrane to remove hardness and ions from diluted seawater, Water, 4, pp. 283-294, DOI: 10.3390/w4020283.
  • 47. Kabsch-Korbutowicz, M., Biłyk, A. & Mołczan, M. (2006). The effect of feed water pretreatment on ultrafiltration membrane performance, Polish Journal of Environmental Studies, 15, pp. 719-725.
  • 48. Kaselain, A., Fatemeh, R. & Yan, W.-M. (2019). Osmotic desalination by solar energy, Renewable Energy, 134, pp. 1473-1490, DOI: 10.1016/j.renene.2018.09.038.
  • 49. Kim, D.H. (2011). A review of desalting process techniques and economic analysis of the recovery of salts from retentates, Desalination, 270, pp. 1-8, DOI: 10.1016/j.desal.2010.12.041.
  • 50. Kimura, K., Hara, H. & Watanabe, Y. (2005). Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs), Desalination, 178, pp. 135-140, DOI: 10.1016/j. desal.2004.11.033.
  • 51. Kołtuniewicz, A.B. & Drioli, E. (2008). Membranes in clean technologies, Wiley-Vch Verlag GmbH, Weinheim.
  • 52. Korus, I. (2010). Removal of Pb(II) ions in ultrafiltration enhanced with polyelectrolyte, Polimery, 55, 2, pp. 135-138, DOI: 10.14314/polimery .2010.135.
  • 53. Korus, I. (2012). The use of ultrafiltration enhanced polymers to heavy metals separation, Wydawnictwo Politechniki Śląskiej, Gliwice 2012. (in Polish)
  • 54. Kosiol, P., Hansmann, B., Ulbricht, M. & Thom, V. (2017). Determination of pore size distributions of virus filtration membranes using gold nanoparticles and their correlation with virus retention, Journal of Membrane Science, 533, pp. 289-301, DOI: 10.1016/j.memsci.2017.03.043.
  • 55. Kowalska, I. (2012). Dead-end and cross-flow ultrafiltration of ionic and non-ionic surfactants, Desalination and Water Treatment, 50, pp. 397-410, DOI: 10.1080/19443994.2012.733574.
  • 56. Kowalska, M., Dudziak, M. & Bohdziewicz, J. (2011). Biodegradation of haloacetic acids in bioreactor with polyamide, enzymatic ultrafiltration membrane, Inżynieria i Ochrona Środowiska, 14, pp. 257-266. (in Polish)
  • 57. Lee, K.P., Arnot, T.C. & Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination - Development to date and future potential, Journal of Membrane Science, 370, pp. 1-22, DOI: 10.1016/j.memsci.2010.12.036.
  • 58. Linares, R.V., Li, Z., Sarp, S., Bucs, Sz.S., Amy, G. & Vrouwenvelder, J.S. (2014). Forward osmosis niches in seawater desalination and wastewater reuse, Water Research, 66, pp. 122-139, DOI: 10.1016/j.watres.2014.08.021.
  • 59. Luks-Betlej, K., Bodzek, M. & Waniek, A. (2001). PAH removal from water by membrane processes, in: Using membranes to assist of cleaner production, Noworyta, A. & Trusek-Hołowina, A. (Eds.). Wrocław, Poland, pp. 61-67.
  • 60. Majewska-Nowak, K., Kabsch-Korbutowicz, M. & Dodź, M. (2001). Herbicide separation by low-pressure membrane process, in: Using membranes to assist of cleaner processes, Noworyta, A. & Trusek-Hołowina, A. (Eds.). Wrocław, Poland, pp. 153-158.
  • 61. Malaeb, L. & Ayoub, G.M. (2011). Reverse osmosis technology for water treatment: State of the art review, Desalination, 267, pp. 1-8, DOI: 10.1016/j.desal.2010.09.001.
  • 62. Mamo, J., García-Galán, M.J., Stefani, M., Rodríguez-Mozaz, S., Barceló, D., Monclús, H., Rodriguez-Roda, I. & Comas, J. (2018). Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation, Chemical Engineering Journal, 331, pp. 450-461, DOI: 10.1016/j.cej.2017.08.050.
  • 63. Molinari, R., Poerio, T. & Argurio, P. (2008). Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process, Chemosphere, 70, pp. 341-348, DOI: 10.1016/j.chemosphere.2007.07.041.
  • 64. Murthy, Z.V.P. & Chaudhari, L.B. (2008). Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters, Journal of Hazardous Materials, 160, pp. 70-77, DOI: 10.1016/j.jhazmat.2008.02.085.
  • 65. Murthy, Z.V.P. & Chaudhari, L.B. (2009). Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedem model, Chemical Engineering Journal, 150, pp. 181-187, DOI: 10.1016/j.cej.2008.12.023.
  • 66. Orecki, A., Tomaszewska, M., Karakulski, K. & Morawski, A.W. (2004). Surface water treatment by nanofiltration method, Desalination, 162, pp. 47-54, DOI: 10.1016/S0011-9664(04)00026-8.
  • 67. Owlad, M., Aroua, M.K., Daud, W.A. & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review, Water, Air, & Soil Pollution, 200, pp. 59-77, DOI: 10.1007/s11270-008-9893.
  • 68. Perez-Gonzalez, A., Urtiaga, A.M., Ibanez, R. & Ortiz, I. (2012). State of the art and review on the treatment technologies of water reverse osmosis concentrates, Water Research, 46, pp. 267-283, DOI: 10.1016/j.watres.2011.10.046.
  • 69. Qdais, H.A. & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: A comparative study, Desalination, 164, pp. 105-110, DOI: 10.1016/S0011- 9164(04)00169-9.
  • 70. Radjenovic, J., Petrovoc, M. & Barcelo, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Research, 43, pp. 831-841, DOI: 10.1016/j.watres.2008.11.043.
  • 71. Rajca, M. (2012). The impact of selected factors on the removal of anionic water pollutants in ion-exchange process of MIEX®DOC, Archives of Environmental Protection, 38, pp. 115-121, DOI: 10.2478/v10265-012-0010-z.
  • 72. Religa, P. & Gawroński, R. (2006). Treatment of tanning wastewaters-membrane processes, Przegląd Włókienniczy - Włókno, Odzież, Skóra, 12, pp. 41-44. (in Polish)
  • 73. Sarkar, B., Venkateswralu, N., Nageswara, R., Bhattacharjee, Ch. & Kale, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation adsorption - nanofiltration approach, Desalination, 212, pp. 129-140, DOI: 10.1016/j.desal.2006.09.021.
  • 74. Shahmansouri, A. & Bellona, C. (2015). Nanofiltration technology in water treatment and reuse: applications and costs, Water Science and Technology, 71, pp. 309-319, DOI: 10.2166/wst.2015.015.
  • 75. Smol, M., Włodarczyk-Makuła, M., Mielczarek, K. & Bohdziewicz, J. (2014a). Comparison of the retention of selected PAHs from municipal landfill leachate by RO and UF processes, Desalination and Water Treatment, 52, pp. 3889-3897, DOI: 10.1080/19443994.2014.887451.
  • 76. Smol, M., Włodarczyk-Makuła, M., Bohdziewicz, J. & Mielczarek, K. (2014b). The use of integrated membrane systems in the removal of the selected pollutants from pre-treated wastewater in coke plant, Monographs of the Environmental Engineering Committee, 119, pp. 143-152.
  • 77. Snyder, S., Adham, S., Redding, A., Cannon, F., DeCarolis, J., Oppenheimer, J., Wert, E. & Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination, 202, pp. 156-181, DOI: 10.1016/j.desal.2005.12.052.
  • 78. Songa, N., Gao, X., Mac, Z., Wanga, X., Weia, Y & Gao, C. (2018). A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination, 437, pp. 59-72, DOI: 10.1016/j.desal.2018.02.024.
  • 79. Sosnowski, T., Suchecka, T. & Piątkiewicz, W. (2004). Penetration of the cell through the microfitration membrane, Monografie Komitetu Inżynierii Środowiska PAN, 22, pp. 359-367. (in Polish)
  • 80. Sozański, M.M., Olańczuk-Neyman, K. & Huck, P.M. (2009). Water treatment technology as autonomous science discipline - history, present state, perspective for development, Technologia Wody, 1, pp. 21-55. (in Polish)
  • 81. Subramani, A. & Jacangelo, J.G. (2014). Treatment technologies for reverse osmosis concentrate volume minimalization, Separation and Purification Technology, 122, pp. 472-489, DOI: 10.1016/j. seppur.2013.12.004.
  • 82. Subramani, A., Badruzzaman, M., Oppenheimer, J. & Jacangelo, J.G. (2011). Energy minimization strategies and renewable energy utilization for desalination: A review, Water Research, 45, pp. 1907-1920.
  • 83. Tagliavini, M. & Schäfer,A.I. (2018). Removal of steroid micropollutants by polymer-based spherical activated carbon (PBSAC) assisted membrane filtration, Journal of Hazardous Materials, 353, pp. 514-521, DOI: 10.1016/j.jhazmat.2018.03.032.
  • 84. Taylor, J.S. & Wiesner, M. (2000). Membranes, in: Membrane processes in water quality and treatment, Letterman, R.D. (Ed.). McGraw Hill, New York.
  • 85. Urbanowska, A. & Kabsch-Korbutowicz, M. (2016). The properties of NOM particles removed from water in ultrafiltration, ion exchange and integrated processes, Desalination and Water Treatment, 57, pp. 13453-13461, DOI: 10.1080/19443994.2015.1028460.
  • 86. Uyak, V., Koyuncu, I., Oktem, I., Cakmakci, M. & Toroz, I. (2008). Removal of trihalomethanes from drinking water by nanofiltration membranes, Journal of Hazardous Materials, 152, pp. 789-794, DOI: 10.1016/j.jhazmat.2007.07.082.
  • 87. Van der Bruggen, B. & Vandecasteele, C. (2003). Removal of pollutants from surface water and ground water by nanofiltration: overview of possible applications in the drinking water, Environmental Pollution, 122, pp. 435-445, DOI: 10.1016/S0269-7491(02)00308-1.
  • 88. Van der Bruggen, B., Everaert, K., Wilms, D. & Vandecasteele, C. (2001). Application of nanofiltration for the removal of pesticides, nitrate and hardness from groundwater: retention properties and economic evaluation, Journal of Membrane Science, 193, pp. 239-248.
  • 89. Velizarov, S., Crespo, J.G. & Reis, M.A. (2004). Removal of inorganic anions from drinking water supplies by membrane bio/processes, Reviews in Environmental Science and Bio/Technology, 3, pp. 361-380, DOI: 10.1007/s11157-004-4627-9.
  • 90. Velizarov, S., Mato, C., Oehmen, A., Serra, S., Reis, M. & Crespo, J. (2008). Removal of inorganic charged micropollutants from drinking water supplies by hybrid ion exchange membrane processes, Desalination, 223, pp. 85-90, DOI: 10.1016/j.desal.2007.01.217.
  • 91. Voutchkov, N. (2016). Desalination-present, past and future, (www. iwa-network.org/desalination-past-present-future (1.03.2019)).
  • 92. Wang, C., Lippincott, L. & Meng, X. (2008). Kinetics of biological perchlorate reduction and pH effect, Journal of Hazardous Materials, 153, pp. 663-669, DOI: 10.1016/j.jhazmat.2007.09.010.
  • 93. Wang, L., Sun, Y & Chen, B. (2018). Rejection of haloacetic acids in water by multi-stage reverse osmosis: Efficiency, mechanisms, and influencing factors, Water Research, 144, pp. 383-392, DOI: 10.1016/j.watres.2018.07.045.
  • 94. Wesołowska, K., Bodzek, M. & Koter, S. (2002). NF- and RO-membranes in drinking water production, in: Proceedings of membranes in drinking and industrial water production MDIW2002, Mulheim an der Ruhr, Germany, B.37a, pp. 357-363.
  • 95. Wilf, M. (2007). The guidebook to membrane desalination technology, Balaban Desalination Publications, L’Aquila, Italy.
  • 96. Wilf, M. (2010). The guidebook to membrane technology for wastewater reclamation, Balaban Desalination Publications, Hopkinton, USA.
  • 97. Wisniewski, J. (2001). Electromembrane processes, in: Membrane Separations, Noworyta, A. & Trusek-Hołownia, A. (Eds.). Wrocław, Poland, pp. 147-179.
  • 98. World Bank (2004). Seawater and brackish water desalination in the Middle East, North Africa and Central Asia, Main Report, World Bank, Washington, DC.
  • 99. Zakrzewska-Trznadel, G. (2003). Radioactive solution treatment by hybrid complexation-UF/NF process, Journal of Membrane Science, 225, pp. 25-39, DOI: 10.1016/S0376-7388(03)00261-8.
  • 100. Zuehlke, S., Duennbier, U., Lesjean, B., Gnirss, R. & Buisson, H. (2006). Long-term comparison of trace organics removal performances between conventional and membrane activated sludge processes, Water Environment Research, 78, pp. 2480-2486, DOI: 10.2175/106143006X111826.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-faa2404a-35e8-48cb-8bc8-9109c94cf03a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.