PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Persistance of TNT Traces in the Presence of Compounds from Battery Cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, laboratory forensic examinations are based on elaborated and verified protocols, allowing for quite precise identification of the type of explosive used in post blast residues. Non-degraded explosives persist in trace quantities mainly on the broken components of explosive devices. Due to this, special care must be taken in order to prevent destruction of minute quantities of explosive material during examination. Apparently quite a big problem is caused by components of electrical cells being the source of reactive chemical compounds that affect the level of identified traces of explosives. The present paper describes the influence of substances present in alkaline batteries cells and Leclanché cells on the decomposition of trace amounts of TNT. Reaction of TNT with battery components was conducted in solution at room as well as the temperature of boiling methanol. Quantitative analysis of the decrease in TNT levels in methanol extracts was carried out by means of GC/MS.
Słowa kluczowe
Rocznik
Strony
280--295
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of High-Energetic Materials, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland
  • Kielanowski Institute of Animal Physiology and Nutrition of Polish Academy of Science, 3 Instytucka Street, 05-110 Jabłonna, Poland
  • Chemistry Department, Central Forensic Laboratory of the Police, 7 Ujazdowskie Avenue, 00-583 Warsaw, Poland
Bibliografia
  • [1] Belardi, G.; Ballirano, P.; Ferrini, M.; Lavecchia, R.; Medici, F.; Piga, L.; Scoppettuolo, A. Characterization of Spent Zinc-Carbon and Alkaline Batteries by SEM-EDS, TGA/DTA and XRPD Analysis. Thermochim. Acta 2011, 526: 169-177.
  • [2] Best Practice Manual for the Forensic Recovery, Identification and Analysis of Explosives Traces. ENFSI-BPM-EXP-01 (vs. 01). ENFSI, November 2015.
  • [3] Tachon, R.; Pichon, V.; Le Borgne, M.B.; Minet, J.J. Comparison of Solid-phase Extraction Sorbents for Sample Clean-up in the Analysis of Organic Explosives. J. Chromatogr. A 2008, 1185: 1-8.
  • [4] Joshi, M.; Delgado, Y.; Guerra, P.; Lai, H.; Almirall, J.R. Detection of Odor Signatures of Smokeless Powders Using Solid Phase Microextraction Coupled to an Ion Mobility Spectrometer. Forensic Sci. Int. 2009, 188(1-3):112-118.
  • [5] Lynch, J.; Myers, K.; Brannon, J.; Delfino, J. Effect of pH and Temperature on the Aqueous Solubility and Dissolution Rate of TNT, RDX and HMX. J. Chem. Eng. Data 2001, 46: 1549-1555.
  • [6] Hantzsch, A.; Kissel, H. Ber. Dtsch. Chem. Ges. 1899, 32: 3137.
  • [7] Wu, Y.Ch. Alkaline Hydrolysis of TNT – Modeling Mass Transport Effect. University of California, Los Angeles, 2001.
  • [8] Gitis, S. Reakcii Aromaticzieskich Nitrosojedinienij. (in Russian) J. Obszcziej Chimii 1957, 89(7): 1894-1897.
  • [9] Yinon, J.; Zitrin, S. Modern Methods and Applications in Analysis of Explosives. John Wiley & Sons, 1993; ISBN 0-471-93894-7.
  • [10] Yinon, J.; Zitrin, S. The Analysis of Explosives. Pergamon Press, 1981; ISBN 978-0-08-023846-3.
  • [11] Trocellier, P.; Djanarthany, S.; Chene, J.; Haddi, A.; Brass, A.M.; Poissonnet, S.; Farges, F. Chemical Durability of Alkali-borosilicate Glasses Studied by Analytical SEM, IBA, Isotopic-tracing and SIMS. Nucl. Instrum. Methods Phys. Res., B 2005, 240: 337-344.
  • [12] Nicoleau, E.; Angeli, F.; Schuller, S.; Charpentier, T.; Jollivet, P.; Moskura, M. Rare-earth Silicate Crystallization in Borosilicate Glasses: Effect on Structural and Chemical Durability Properties. J. Non-Cryst. Solids 2016, 438: 37-48.
  • [13] Arbab, M.; Marghussian, V.K.; Sarpoolaky, H.; Kord, M. The Effect of RO Oxides on Microstructure and Chemical Durability of Borosilicate Glasses Opacified by P2O5. Ceram. Int. 2007, 33: 943-950.
  • [14] Howell, B.F.; Simmons, J.H.; Haller, W. Loss of Chemical Resistance to Aqueous Attack in a Borosilicate Glass Due to Phase Separation. Am. Ceram. Soc., Bull. 1975, 54: 707-709.
  • [15] Takamori, T.; Tomozawa, M. HCl Leaching Rate and Microstructure of Phase Separated Borosilicate Glasses. J. Am. Ceram. Soc. 1978, 61: 507-512.
  • [16] Scholze, H. Chemical Durability of Glasses. J. Non-Cryst. Solids 1982, 52: 91-103.
  • [17] Clark, D.E.; Pantano, E.G.; Hench, L.L. Corrosion of Glass. Books for the Industry and the Glass Industry, New York, 1979.
  • [18] Abdul-Karim, N.; Blackman, C.S.; Gill, P.P.; Wingstedtd, E.M.M.; Reifd, B.A.P. Post-blast Explosive Residue – a Review of Formation and Dispersion Theories and Experimental Research. RSC Adv. 2014, 4(97): 54354-54371.
  • [19] Yinon, Y. Trace Analysis of Explosives in Water by Gas-Chromatography-Mass Spectrometry with a Temperature-programmed Injector. J. Chromatogr., A 1996, 742: 205-209.
  • [20] Bajpai, R.; Parekh, D.; Herrmann, S.; Popović, M.; Paca, J.; Qasim, M. A Kinetic Model of Aqueous-phase Alkali Hydrolysis of 2,4,6-Trinitrotoluene. J. Hazard. Mater. 2004, 106B: 55-66.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa9ed6b5-c1b0-42ac-97f9-412544e4f8b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.