
Schedae Informaticae Vol. 30 (2021): 9–15
doi: 10.4467/20838476SI.21.001.14382

On Some Cryptographic Protocol

Wit Foryś
Faculty of Applied Mathematics, AGH University of Science and Technology

al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: wforys@agh.edu.pl

Abstract. In this paper we present a cryptographic protocol for a seller – buyer

problem and in particular we prove that non-emptiness of a semi-commutative

set defined by mappings involved in the protocol is a decidable problem.

Keywords: cryptographic protocol, key-code, semi-commutativity set

1. Introduction

Let us consider the following problem. There are a seller S and a buyer B. The seller
has some secrets and is offering them for sale and the buyer wants to buy one. It is
assumed that B is not willing to disclose to S which secret he wants and that B after
buying the secret should not learn more than this chosen secret only.
The problem, usually described as a cryptographic protocol, has generated a research
on left inverses of mappings, mainly morphisms and semi-commutativity sets – see
[5, 6].

In this paper, on the one hand we limited our considerations, assuming that key-
code morphisms are used in the protocol, and on the other hand, we have generalized
our considerations by introducing so called rational relations in place of left-inverses
of morphisms.

10

2. Formalization of the Protocol

Let us formalize the mentioned above cryptographic protocol.
Let us denote secrets as words

w1,, wn.

The seller S has his own encryption function ES and decryption funtion DS such that
for each word w under consideration

DS(ES(w)) = w.

Similarly, the buyer B has his encryption and decryption functions EB , DB with the
above property. A protocol could be executed according to the following three steps.

1. S gives B the sequence
ES(w1),, ES(wn)

(descriptions and/or identifiers of secrets).

2. If B wants to buy the i-th secret he sents S the value EB(ES(wi)).

3. After receiving a specified amount of money S sends B the value DSEBES(wi).

If the following equality holds

(∗) DBDSEBES(wi) = wi

B has learned the secret he chose. Notice that the additional cryptographic require-
ments are fulfilled. B should not be able to learn more than this chosen secret and
S should not be able to determine which secret was chosen by B. It is worth noting
that in order to ensure the latter requirement, encryption functions should not be
made public. If not, the seller A could compute values EB(ES(wk)) for k = 1, ..., n
and compare them with the obtained from B value EB(ES(wi)) finally deducing the
secret which S bought.

3. Preliminaries

We assume the reader is familiar with the basic notions and concepts from theories
of formal languages and codes. For some properties of the introduced in this section
notions see [1, 2, 4]

Let A∗ denote a free monoid generated by a finite set A. The length of a word
w ∈ A∗ is defined to be the number of letters occurring in w and denoted by |w| (the
length of the empty word 1 equals 0).

For a morphism h : A∗ −→ B∗ we say that a mapping h−1 : B∗ −→ A∗ is a left
inverse of h, if and only if h−1h(w) = w for all w ∈ A∗. Notice, that

11

1. h−1 exists if h is injective, that is if h is a code,

2. h−1 : B∗ −→ A∗ is, in general, determined ambiguously, according to the fact
that usually h(A∗) is a proper subset of B∗,

3. h−1 is, in general, a mapping, not necessarily a morphism.

Assuming that morphisms f : A∗ −→ A∗ and g : A∗ −→ A∗ are codes (injections)
and denoting by f−1, g−1 some fixed inverses on A∗, it is possible to define [1] a semi-
commutativity set associated to the ordered quadruple f−1, g−1, f, g putting

SCOM(f−1, g−1, f, g) = {w ∈ A∗ : f−1g−1fg(w) = w}.

A word w ∈ A∗ is called a key-word, if there is at least one letter in A that occurs
exactly once in w. This letter is called a key of w. A set C ⊂ A∗ of key-words is called
a key-code, if there exists an injection (called key-injection) key : C −→ A such that
for any w ∈ C,

1. key(w) is a key of w,

2. key(w) occurs in no word of C other than w itself.

For any key-word w in a key-code C and a fixed mapping key we use the notation
w = l(a)ar(a) where a = key(w) is the key of w and l(a), r(a) denote a suitable prefix
and sufix of w. Given a key-code C and a fixed key-injection key the set of all keys of
words in C is denoted by key(C), simply an image of C by a mapping key. Of course
#C = #key(C). We extend key to words. For w ∈ A∗ key(w) is a word composed
of all keys occurring in w. If key(w) 6= 1 we say that w is a non-trivial word. A set
B ⊂ A∗ is non-trivial if it contains a non-trivial word.

A key-injection could be considered as a bijection and inverted to

key−1 : key(C) −→ C.

Now it is possible to extend it to a morphism, say t : A∗ −→ A∗ putting t(a) = 1 for
all a ∈ A \ key(C). The obtained in such a way morphism t is referred to as a key-
code morphism. Obviously, in general a key-code morphism has not to be a code as
a matter of the fact that usually it erases some letters from A.

Assuming that all morphisms used for a semi-commutativity sets and in fact for
the introduced above protocol are key-code morphisms limits a bit the research. But
we generalize the study considering inverses of key-code morphisms as rational rela-
tions. Namely, let us assume that tS , tB are key-code morphisms used as encryption
operations by S and B, respectively. Now, we consider, in the place of equation (∗),
a weak version of this equation, namely a relation

(∗∗) w ∈ t−1
B t−1

S tBtS(w)

Even with this weak version, it is still possible to point out a strong connection with
cryptographic protocols, for example using interpretative morphisms as in [7].

Choosing this direction of a research we focus on a decidability problem that we
will present in the sequel.

12

4. Generalization of the problem

Let us assume that tS , tB are key-code morphisms used as encryption operations by
S and B, respectively. Assume that key(CS) = key(CB). Let t−1

B , t−1
S denote rational

relations [3] defined by inverse images.
In the place of equation

(∗) DBDSEBES(w) = w

we consider
(∗∗) w ∈ t−1

B t−1
S tBtS(w)

Hence, we consider a generalized semi-commutativity set associated to the ordered
quadruple t−1

B , t−1
S , tB , tS

SCOM(t−1
B , t−1

S , tB , tS) = {w ∈ A∗ : w ∈ t−1
B t−1

S tBtS(w)}.

5. Result

Within this section we assume that there are given two key-code morphisms tS :
A∗ −→ A∗ and tB : A∗ −→ A∗. A rational relation t−1

S ⊂ A∗ × A∗ is defined as
follows. For u,w ∈ A∗

u t−1
S w iff u ∈ t−1

S (w)

and of course exactly the same for t−1
B .

Lemma 1. Let w ∈ A=A∗ 1) be a nontrivial word, that is key(w) 6= 1.
w ∈ t−1

B t−1
S tBtS(w) iff C+

S ∩ C+
B is not empty.

Proof. If w ∈ t−1
B t−1

S tBtS(w) then tBtS(w) = tStB(w) = z ∈ C+
S ∩ C+

B .
If w ∈ C+

S ∩ C+
B , then tBtS(w) = tStB(w) and thus w ∈ t−1

B t−1
S tBtS(w).

Theorem 1. It is decidable if a non-empty and non-trivial word w is in
t−1
B t−1

S tBtS(w). Hence it is decidable if SCOM(t−1
B , t−1

S , tB , tS) = {w ∈ A∗ : w ∈
t−1
B t−1

S tBtS(w)} is empty.

Proof. According to the Lemma 5.1 it is enough to prove that a problem of finding
a non-empty word w in C∗

B ∩ C∗
S is decidable. We apply ”dominoes technique” –

see [4]. Let us visualise words of key-codes CB , CS as dominoes. Each domino is
divided into squares and in each square there is a letter of a represented word. Thus
the number of squares of a domino is exactly the same as the length of a word which
it represents.

Now, having two sets of dominoes, say [C]B and [C]S , which represent words of CB

and CS respectively, we construct a set of double-dominoes according to the following
procedure.

13

1. Fix a domino [k1] from [C]S where k1 is its key.

2. Choose all dominoes from [C]B with keys occurring as letters in [k1].

3. Create a double domino by arranging two rows of dominoes, one on the top of
the other. In the upper row, put the domino selected in step 1. from [C] and
in the lower one we put dominoes obtained in 2. in such a way that:

(a) there are no gaps between them,

(b) the letters in both rows are identical.

4. If the lower row is longer than the upper one, then consider a part of the most
right domino in this row as a fixed in step 1. and repeat respectively steps 2.
and 3. for [C]S , putting this time dominoes in the upper row,

5. Continue this procedure for as long as possible.

As a result of applying this procedure to all dominoes from [C]S we obtain a finite
set of double-dominoes.

Hence we have the following possibilities:

A double domino of this type is referred to as an initial double domino.

A double domino of this type is referred to as a middle double domino.

A double domino of this type is referred to as a final double domino.

A node set consists of all double-dominoes (initial, final and middle).
It is essential that in what follows a well matched double dominoes means that for

any two double dominoes it is possible to put them next to each other without gaps.
It includes also the case in which an upper or lower domino from the second double
domino covers (maybe partially) the first double domino. The accepted covering
should be executed along full dominoes from CS or CB .

14

A well matched double dominoes:

A well matched double dominoes - covering case.

Finally we construct a tree of successful paths

1. choose an initial double domino as a root of a tree

2. choose all double dominoes well matched to the root and put an arc from the
initial double domino to each of them.

3. having double dominoes – leaves of the constructed tree apply to each of them
point 2 choosing new dominoes, that is in any path of the tree starting at the
root there is no repeated double domino.

4. continue this procedure for as long as possible,

The obtained tree is finite. Find all paths from the root to the leafs which are
final dominoes. These paths are covered by words - from C+

B and C+
S simultaneously.

These words are generators of C∗
B ∩ C∗

S .
Executing the above algorithm for all initial dominoes as roots we obtain D, a set of
words - generators of C∗

B ∩ C∗
S . Hence C∗

B ∩ C∗
S = D∗ and the proof is finished.

6. References

[1] J.A.Anderson, The intersection of retracts of A∗, Theoretical Computer Science,
2000, 237, pp. 312-326.

[2] J.A.Anderson, W.Forys, T.Head, Retracts and semiretracts of free monoids, AMS
Meeting, San Francisco, 1991.

[3] S.Eilenberg, Automata, Languages, and Machines, Academic Press, 1974.

[4] W.Forys, K.Krawczyk, An Algorithmic Approach to the Problem of a Semiretract
Base, Theoretical Computer Science, 2006, 369, pp. 314-322.

15

[5] G.Paun A.Salomaa, Semi-commutativity Sets a Cryptographically Grounded
Topic, Bull. Math. Soc. Sci. Math. Roumaine, 1991, 35, pp. 255-270.

[6] L.Kari, G.Paun, A.Salomaa, Semi-Commutativity Sets of Morphisms over
Finitely Generated Free Monoids, Bull. Math. Soc. Sci. Math. Roumaine, 1992,
36, pp. 293-307.

[7] A.Salomaa, Public-key Cryptography, Springer V. 1990.

