PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of background noise in the GNSS position time series using spectral analysis – A case study of Nepal Himalaya

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Position time series from permanent Global Navigation Satellite System (GNSS) stations are commonly used for estimating secular velocities of discrete points on the Earth’s surface. An understanding of background noise in the GNSS position time series is essential to obtain realistic estimates of velocity uncertainties. The current study focuses on the investigation of background noise in position time series obtained from thirteen permanent GNSS stations located in Nepal Himalaya using the spectral analysis method. The power spectrum of the GNSS position time series has been estimated using the Lomb–Scargle method. The iterative nonlinear Levenberg–Marquardt (LM) algorithm has been applied to estimate the spectral index of the power spectrum. The power spectrum can be described by white noise in the high frequency zone and power law noise in the lower frequency zone. The mean and the standard deviation of the estimated spectral indices are […] for north, east and vertical components, respectively. On average, the power law noise extends up to a period of ca. 21 days. For a shorter period, i.e. less than ca. 21 days, the spectra are white. The spectral index corresponding to random walk noise (ca. –2) is obtained for a site located above the base of a seismogenic zone which can be due to the combined effect of tectonic and nontectonic factors rather than a spurious monumental motion. Overall, the usefulness of investigating the background noise in the GNSS position time series is discussed.
Rocznik
Strony
375--388
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679, Warsaw, Poland
  • CSIR -Fourth Paradigm Institute, NAL Belur campus, Wind Tunnel Road, 560 037, Bangalore, Karnataka, India
  • Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679, Warsaw, Poland
autor
  • Department of Physics, Tezpur University, 784028, Napaam, Assam, India
Bibliografia
  • [1] Ader, T., Avouac, J-P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., Genrich, J., Thomas, M., Chanard, K., Sapkota, S.N., Rajaure, S., Shreshtha, P., Ding, L. and Flouzat M. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 117, B04403.
  • [2] Agnew, D.C. (1992). The time-domain behavior of power-law noises. Geophysical Research Letters, 19 (4), 333–336.
  • [3] Akilan, A., Balaji, S., Srinivas, Y. and Yuvaraj, N. (2013). Plate motion predictability using Hurst exponent applied to the Maitri-antarctica GPS network. Journal of the Geological Society of India, 82 (6), 613–620.
  • [4] Altamimi, Z., Collilieux, X. and Métivier, L. (2011). ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy, 85 (8), 457–473.
  • [5] Amiri-Simkooei, A.R., Tiberius, C.C.J.M. and Teunissen, S.P. (2007). Assessment of noise in GPS coordinate time series: methodology and results. Journal of Geophysical Research: Solid Earth, 112(B7), B07413.
  • [6] Avouac, J-P., Adhikari, L.B., Galetzka, J.E., Koirala, B., Shrestha, P., Gupta, R.M., Gautam, U., Flouzat, M., Bollinger, L., Bhatterai, M., Kandel, T., Timsina, C., Sapkota, S.N., Rajaure, S., Genrich, J.F. and Maharjan, N. (2013). Caltech Tectonics Observatory Nepal Network – NEGAR – SYBCSyangboche P.S., UNAVCO, Inc., GPS/GNSS Observations Dataset.
  • [7] Beavan, J. (2005). Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments. Journal of Geophysical Research, 110, 08410.
  • [8] Bettinelli, P., Avouac, J-P., Flouzat, M., Jouanne, F., Bollinger, L. and Willis, P. (2006). Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements. Journal of Geodesy, 80(8–11), 567–589.
  • [9] Bogusz, J., Rosat, S., Klos, A. and Lenczuk, A. (2018). On the noise characteristics of time series recorded with nearby located GPS receivers and superconducting gravity meters. Acta Geodaetica et Geophysica, 53(2), 201–220.
  • [10] Böhm, J., Heinkelmann, R. and Schuh, H. (2007). Short Note: A global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81(10), 679–683.
  • [11] Dmitrieva, K., Segall, P. and DeMets, C.J. (2015). Network-based estimation of time-dependent noise in GPS position time series. Journal of Geodesy, 89(6), 591–606.
  • [12] Finlay, C.C., Maus, S., Beggan, C.D., Bondar, T.N., Chambodut, A., Chernova, T.A., Chulliat, A., Golovkov, V.P., Hamilton, B., Hamoudi, M., Holme, R., Hulot, G., Kuang, W., Langlais, B., Lesur, V., Lowes, F.J., Lühr, H., Macmillan, S., Mandea, M., McLean, S., Manoj, C., Menvielle, I., Michaelis, N., Olsen, J., Rauberg, M., Rother, T., Sabaka, J., Tangborn, A., Tøffner-Clausen, L.M., Thébault, E., Thomson, A.W.P., Wardinski, I., Wei, Z. and Zvereva, T.I., (2010). International Geomagnetic Reference Field: the eleventh generation. Geophysical Journal International, 183(3), 1216–1230.
  • [13] Fritsche, M., Dietrich, R., Knöfel, C., Rülke, A., Vey, S., Rothacher, M. and Steigenberger, P. (2005). Impact of higher-order ionospheric terms on GPS estimates. Geophysical Research Letters, 32(23), L23311.
  • [14] Hackl, M., Malservisi, R., Hugentobler, U. andWonnacott, R. (2011). Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network. Journal of Geophysical Research: Solid Earth, 116 (B11), B11404.
  • [15] Herring, T.A., King, R.W. and McClusky, S.C. (2010). Introduction to GAMIT/GLOBK release 10.4. Departament of Earth, and Planetary Sciences, MIT, Cambridge, USA. https://geo.gob.bo/portal/IMG/pdf/intro_gg_1_.pdf.
  • [16] Hurst, H.E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116(1), 770–799.
  • [17] Jiang, W., Deng, L., Li, Z., Zhou, X. and Liu, H. (2014). Effects on noise properties of GPS time series caused by higher-order ionospheric corrections. Advances in Space Research, 53 (7), 1035–1046.
  • [18] Johnson, H.O. and Agnew, D.C. (1995). Monument motion and measurements of crustal velocities. Geophysical Research Letters, 22(21), 2905–2908.
  • [19] King, M.A. and Williams, S. (2009). Apparent stability of GPS monumentation from short-baseline time series. Journal of Geophysical Research: Solid Earth, 114(B10), 10403.
  • [20] Klos, A., Bogusz, J., Figurski, M. and Kosek, W. (2015). Irregular variations in GPS time series by probability and noise analysis. Survey Review, 47(342), 163–173.
  • [21] Kouba, J. (2008). Implementation and testing of the gridded Vienna mapping function 1(VMF1). Journal of Geodesy, 82 (4–5), 193–205.
  • [22] Langbein, J. and Johnson, H. (1997). Correlated errors in geodetic time series: Implications for timedependent deformation. Journal of Geophysical References Research: Solid Earth, 102 (B1), 591–603.
  • [23] Langbein, J. (2012). Estimating rate uncertainty with maximum likelihood: differences between powerlaw and flicker–random-walk models. Journal of Geodesy, 86(9), 775–783.
  • [24] Lomb, N.R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39 (2), 447–462.
  • [25] Mandelbrot, B.B. (1983). The fractal geometry of nature. New York: WH Freeman and Company.
  • [26] Mandelbrot, B.B. and van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM review, 10 (4), 422–437.
  • [27] Mandelbrot, B.B. and Wallis, J.R. (1969). Some Long-Run Properties Geophysical Record. Water Resources Research, 5 (5), 321–340.
  • [28] Mao, A., Harrison, C.G. and Dixon, T.H. (1999). Noise in GPS coordinate time series. Journal of Geophysical Research: Solid Earth, 104 (B2), 2797–2816.
  • [29] Panda, D., Kundu, B., Gahalaut, V.K., Bürgmann, R., Jha, B., Asaithambi, R. and Bansal, A.K. (2018). Seasonal modulation of deep slow-slip and earthquakes on the Main Himalayan Thrust. Nature communications, 9(9), 4140.
  • [30] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge, United Kingdom: Cambridge University press.
  • [31] Ray, J., Altamimi, Z., Collilieux, X. and van Dam, T. (2008). Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions, 12(1), 55–64.
  • [32] Ray, J., Vijayan, M.S.M. and Kumar, A. (2019). Noise characteristics of GPS time series and their influence on velocity uncertainties. Journal of Earth System Science, 128, 146.
  • [33] Rebischung, P., Chanard, K., Metivier, L. and Altamimi, Z. (2017). Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations? American Geophysical Union, New Orleans, USA, 11–15 December 2017, abstract No G13A-04.
  • [34] Saastamoinen, J., (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. [In:] Henriksen S.W., Mancini A., Chovitz B.H. (eds.), The use of artificial satellites for geodesy, Geophysical Monograph Series, 15, 247–251.
  • [35] Santamaría-Gómez, A., Bouin, M.N., Collilieux, X. and Wöppelmann, G. (2011). Correlated errors in GPS position time series: implications for velocity estimates. Journal of Geophysical Research: Solid Earth, 116 (B1), B01405.
  • [36] Scargle, J.D. (1982). Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 263, 835–853.
  • [37] Schaer, S., Gurtner,W. and Feltens, J. (1998). IONEX: The IONosphere Map EXchange Format Version 1. Proc. of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 1998. http://ftp.aiub.unibe.ch/ionex/ionex1.pdf.
  • [38] Stan, C., Cristescu, C-M. and Cristescu, C. (2014). Computation of hurst exponent of time series using delayed (log-) returns. Application to estimating the financial volatility. University Politechnica of Bucharest Scientific Bulletin, 76(3), 235–244.
  • [39] Wang,W., Zhao, B.,Wang, Q. and Yang, S. (2012). Noise analysis of continuous GPS coordinate time series for CMONOC. Advances in Space Research, 49 (5), 943–956.
  • [40] Williams, S.D. (2003). Offsets in global positioning system time series. Journal of Geophysical Research: Solid Earth, 108 (B6), 2310.
  • [41] Williams, S.D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R.M., Prawirodirdjo, L., Miller, M. and Johnson, D.J., (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth, 109 (B3), B03412.
  • [42] Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S., Genrich, J., Wdowinski, S. and Behr, J., (1997). Southern California Permanent GPS Geodetic Array Error analysis of daily position estimates and site velocities. Journal of Geophysical Research: Solid Earth, 102 (B8), 18035–18055.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa9397dd-9da2-4ec6-aad2-3705e05c0a90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.