PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the different capacitor configurations of the supply system on the efficiency of the rail accelerator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of the capacitor configuration in the pulse supply system for rail accelerators on its efficiency was investigated in the paper. Two different configurations were compared: the first with a parallel connection of capacitors and the second with a parallel-series connection. In both cases, the same number of capacitors was assumed. All other parameters of the device were kept constant, i.e. mass and dimensions of the armature, rail length and stator geometry. A field-circuit model was used to analyse numerically the transients for different capacitor configurations and voltage values. The model was verified experimentally.
Rocznik
Strony
299--313
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Department of Electrical Engineering and Mechatronics, Opole University of Technology Prószkowska 76 str., 45-758 Opole, Poland
  • Department of Electrical Engineering and Mechatronics, Opole University of Technology Prószkowska 76 str., 45-758 Opole, Poland
  • Department of Electrical Engineering and Mechatronics, Opole University of Technology Prószkowska 76 str., 45-758 Opole, Poland
Bibliografia
  • [1] Hundertmark S., Lancelle D., A scenario for a future European shipboard railgun, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1194–1197 (2015), DOI: 10.1109/TPS.2015.2403863.
  • [2] Gallant J., Vancaeyzeele T., Lauwens B., Wild B., Alouahabi F., Schneider M., Design considerations for an electromagnetic railgun firing intelligent bursts to be used against antiship missiles, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1179–1184 (2015), DOI: 10.1109/TPS.2015.2416774.
  • [3] Lehmann P., Reck B., Vo M.D., Behrens J., Acceleration of a suborbital payload using an electromagnetic railgun, IEEE Trans. Magn., vol. 43, no. 1, pp. 480–485 (2007), DOI: 10.1109/TMAG.2006.887666.
  • [4] Gores P.A., Vincent G., Schneider M., Spray J.G., Appraisal of Rapid-Fire Electromagnetic Launch Effects on Ceramic Targets, IEEE Transactions on Plasma Science, vol. 47, no. 8, pp. 4175–4180 (2019), DOI: 10.1109/TPS.2019.2921731.
  • [5] Vricella A., Delfini A., Pacciani A., Pastore R., Micheli D., Rubini G., Marchetti M., Santoni F., A new advanced railgun system for debris impact study, in Procedia Structural Integrity, Elsevier B.V., pp. 545–552 (2017). DOI: 10.1016/j.prostr.2017.04.044.
  • [6] Slimane S.A., Slimane A., Ahmed G., Boudjemai A., Said K., Amine S., Mouloud D., Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding, Mechanics of Advanced Materials and Structures, vol. 29, no. 25, pp. 4487–4505 (2022), DOI: 10.1080/15376494.2021.1931991.
  • [7] Siemenn A.E. Deo B., Ng F., Zhou J., Owens C., Atue S.U., Forsuelo M., A Railgun Secondary Propulsion System for High-Speed Hyperloop Transportation, IEEE Transactions on Plasma Science, vol. 51, no. 1, pp. 243–248 (2023), DOI: 10.1109/TPS.2022.3232406.
  • [8] Schneider M., Vincent G., Hogan J.D., Spray J.G., The use of a railgun facility for dynamic fracture of brittle materials, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1162–1166 (2015), DOI: 10.1109/TPS.2015.2396081.
  • [9] Poniaev S.A., Bobashev S.V., Zhukov B.G., Kurakin R.O., Sedov A.I., Izotov S.N., Kulakov S.L., Smirnova M.N., Small-size railgun of mm-size solid bodies for hypervelocity material testing, Acta Astronaut, vol. 109, pp. 162–165 (2015), DOI: 10.1016/j.actaastro.2014.11.012.
  • [10] Hundertmark S., Vincent G., Schubert F., Urban J., The NGL-60 Railgun, IEEE Transactions on Plasma Science, vol. 47, no. 7, pp. 3327–3330 (2019), DOI: 10.1109/TPS.2019.2921099.
  • [11] Siaenen T., Schneider M., Zacharias P., Loffler M.J., Actively controlling the muzzle velocity of a railgun, IEEE Transactions on Plasma Science, vol. 41, no. 5, pp. 1514–1519 (2013), DOI: 10.1109/TPS.2013.2245672.
  • [12] Waindok A., Piekielny P., Analysis of an iron-core and ironless railguns powered sequentially, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 37, no. 5, pp. 1707–1721 (2018), DOI: 10.1108/COMPEL-12-2017-0533.
  • [13] Tomczuk B., Koteras D., Magnetic flux distribution in the amorphous modular transformers, Journal of Magnetism and Magnetic Materials, vol. 323, no. 12, pp. 1611–1615 (2011), DOI: 10.1016/ j.jmmm.2011.01.007.
  • [14] Wajnert D., Sykulski J.K., Tomczuk B., An enhanced dynamic simulation model of a hybrid magnetic bearing taking account of the sensor noise, Sensors, vol. 20, no. 4 (2020), DOI: 10.3390/s20041116.
  • [15] Wajnert D., A field-circuit model of the hybrid magnetic bearing, Archive of Mechanical Engineering, vol. 66, no. 2, pp. 191–208 (2019), DOI: 10.24425/ame.2019.128444.
  • [16] Vincent G., Hundertmark S., Using the SR\3-60 railgun in augmented mode, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1555–1558 (2015), DOI: 10.1109/TPS.2015.2405572.
  • [17] Jin L., Lei B., Zhang Q., Zhu R., Electromechanical performance of rails with different cross-sectional shapes in railgun, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1220–1224 (2015), DOI: 10.1109/TPS.2015.2413892.
  • [18] Guo X., Dai L., Zhang Q., Lin F., Huang Q., Zhao T., Influences of Electric Parameters of Pulsed Power Supply on Electromagnetic Railgun System, IEEE Transactions on Plasma Science, vol. 43, no. 9, pp. 3260–3267 (2015), DOI: 10.1109/TPS.2014.2349997.
  • [19] Chang X., Yu X., Liu X., Li Z., He H., A Closed-Loop Velocity Control System for Electromagnetic Railguns, IEEE Transactions on Plasma Science, vol. 47, no. 5, pp. 2269–2274 (2019), DOI: 10.1109/TPS.2018.2879798.
  • [20] Liebfried O., Brommer V., Demonstration of a 1 MJ XRAM Generator Supplying a Medium Caliber Railgun, IEEE Access, vol. 8, pp. 225018–225031 (2020), DOI: 10.1109/ACCESS.2020.3044441.
  • [21] Kulkarni A.S., Thomas M.J., Performance analysis of a self-excited passive compulsator driving a railgun with field winding excited by a secondary armature, IEEE Transactions on Plasma Science, vol. 47, no. 10, pp. 4738–4744 (2019), DOI: 10.1109/TPS.2019.2939852.
  • [22] Waindok A., Piekielny P., Transient analysis of a railgun with permanent magnets support, Acta Mechanica et Automatica, vol. 11, no. 4, pp. 302–307 (2017), DOI: 10.1515/ama-2017-0046.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa90d154-89b1-4a71-a602-58950ed421b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.