PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantifying energy not served in power capacity expansion planning with intermittent sustainable technologies

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, estimations are made of the energy not served (ENS) in a power capacity expansion problem in the case of integration of intermittent sustainable technologies. For this purpose, part of the power generation system of the United Arab Emirates (UAE) is examined. Five capacity expansion scenarios using sustainable power generation technologies are investigated, including the integration of carbon capture and storage (CCS) technologies and solar-based power generation systems (intermittent systems as well as dispatchable systems using thermal storage), and compared with the business as usual scenario (BAU) for various natural gas prices. Based on the input data and assumptions made, the results indicate that the BAU scenario is the least cost option. However, if the UAE move towards the use of sustainable power generation technologies in order to reduce carbon dioxide emissions, the most suitable alternative technologies are: (i) natural gas combined cycle technology integrated with CCS systems, and (ii) concentrated solar power systems with 24/7 operation. The other candidate sustainable technologies have a considerable adverse impact on system reliability since their dispatchability is marginal, leading to power interruptions and thus high ENS cost.
Rocznik
Strony
25--33
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
  • Department of Electrical Engineering, Cyprus University of Technology, P.O. Box 50329, 3603 Limassol, Cyprus
Bibliografia
  • [1] A. Poullikkas, M. Gadalla, Assessment of solar electricity production in the United Arab Emirates, International Journal of Sustainable Energy 32 (6) (2013) 631-642.
  • [2] Wien Automatic System Planning (WASP) Package: A Computer Code for Power Generating System Expansion Planning Version WASP - IV with User Interface User's Manual, Vienna (2006).
  • [3] Sharjah electricity and water authority (2014). URL www.sewa.gov.ae
  • [4] A. Poullikkas, I. Hadjipaschalis, G. Kourtis, The cost of integration of parabolic trough CSP plants in isolated mediterranean power systems, Renewable and Sustainable Energy Reviews 14 (2010) 1469-1476.
  • [5] A. Poullikkas, I. Hadjipaschalis, C. Christou, The cost of integration of zero emission power plants - A case study for the island of Cyprus, Energy Policy 37 (2009) 669-679.
  • [6] A. Poullikkas, Parametric cost-benefit analysis for the installation of photovoltaic parks in the island of Cyprus, Energy Policy 37 (2009) 3673-3680.
  • [7] T. Tsoutsos, V. Gekas, K. Marketaki, Technical and economical evaluation of solar thermal power generation, Renewable Energy 28 (2003) 873-886.
  • [8] V. Rai, D. G. Victor, M. C. Thurber, Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies, Energy Policy 38 (2010) 4089-4098.
  • [9] G. Ordorica-Garcia, P. Douglas, E. Croiset, L. Zheng, Greenhouse Gas Control Technologies, Elsevier, 2005, Ch. Technoeconomic evaluation of IGCC power plants with CO2 capture, pp. 1193-1198.
  • [10] Y. M. Al-Saleh, G. Vidican, L. Natarajan, V. V. Theeyattuparampil, Carbon capture, utilisation and storage scenarios for the Gulf Cooperation Council region: A Delphi-based foresight study, Futures 44 (2012) 105-115.
  • [11] B. Burdic, Photovoltaic cells: selecting the right solar technology for your roof, Environmental Design and Construction 11 (10) (2008) 32-36.
  • [12] M. D. Islam, A. A. Alili, I. Kubo, M. Ohadi, Measurement of solar-energy (direct beam radiation) in Abu Dhabi, UAE, Renewable Energy 35 (2010) 515-519.
  • [13] A. Poullikkas, Introduction to power generation technologies, Nova Science Publishers, New York, 2009.
  • [14] J. F. Feldhoff, K. Schmitz, M. Eck, L. Schnatbaum-Laumann, D. Laing, F. Ortiz-Vives, J. Schulte-Fischedick, Comparative system analysis of direct steam generation and synthetic oil parabolic trough power plants with integrated thermal storage, Solar Energy 86 (2012) 520-530.
  • [15] S. H. Madaeni, R. Sioshansi, P. Denholm, How thermal energy storage enhances the economic viability of concentrating solar power, in: Proceedings of the IEEE, Vol. 100, 2012, pp. 335-347.
  • [16] L. Fan, C. S. Norman, A. G. Patt, Electricity capacity investment under risk aversion: A case study of coal, gas, and concentrated solar power, Energy Economics 34 (2012) 54-61.
  • [17] A. Poullikkas, G. Kourtis, I. Hadjipaschalis, A hybrid model for the optimum integration of renewable technologies in power generation systems, Energy Policy 39 (2011) 926-935.
  • [18] W. Short, N. Blair, P. Sullivan, T. Mai, ReEDS model documentation: Base case data and model description, Tech. rep., NREL (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa8d8458-0e0c-40b9-b582-e46c29a35b42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.