PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Quantitative characterization of seepage behavior in rough fracture considering hydromechanical coupling effect: an experimental study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To study the effect of fracture morphology and in situ stress on the seepage behavior of rough fractures, hydraulic–mechanical experiments with different confining stresses, pore pressures and fracture geometry were carried out. The dimensionless parameter non-Darcy coefficient factor K and K-based critical Reynolds number model (KCRN) was proposed to characterize the behavior of rough-wall fracture and fluid seepage. The results show that the seepage flow of rough-wall fracture can be well described by Forchheimer equation. As the confining pressure increases from 1 to 31 MPa, the two walls of the rough fracture are compressed, and the fluid flow capacity is weakened, resulting in an increase of 2–3 orders of magnitude in Forchheimer viscosity coefficient A. Also affected by the increase in the confining pressure, the contact area between the two walls of the rough fracture increases, which makes the fluid channel become curved, increases the dissipation of water pressure in the inertial process and causes the inertial term coefficient B to increase by 2–3 orders of magnitude in general. In the whole range of test confining pressure (1 MPa–31 MPa), the flow state of rough fracture fluid is divided into zones based on the critical Reynolds number. The average hydraulic aperture decreases with the increase in the confining pressure, which can be perfectly fitted by hyperbolic function. The calculated critical Reynolds number of six rough fracture samples varies from 0.0196 to 1.0424. According to the experimental data, the K-based critical Reynolds number model (KCRN) is validated, and the validation results prove the accuracy and reliability of the model.
Czasopismo
Rocznik
Strony
2245--2264
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • Energy Research Institute of Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230000, Anhui, China
  • National and Local Joint Engineering Research Center of Precision Coal Mining, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • Energy Research Institute of Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230000, Anhui, China
  • National and Local Joint Engineering Research Center of Precision Coal Mining, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • Energy Research Institute of Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230000, Anhui, China
  • National and Local Joint Engineering Research Center of Precision Coal Mining, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • Energy Research Institute of Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230000, Anhui, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • Energy Research Institute of Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230000, Anhui, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • Energy Research Institute of Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230000, Anhui, China
Bibliografia
  • 1. Agheshlui H, Sedaghat MH, Azizmohammadi S (2019) A comparative study of stress influence on fracture apertures in fragmented rocks. J Rock Mech Geotech Eng 11:38–45. https://doi.org/10.1016/j.jrmge.2018.05.003
  • 2. Andersen PS, Bratteks B, Zhou Y, Nadeau P, Nermoen A, Yu Z, Fjelde I, Oelkers E (2020) Carbon capture utilization and storage (CCUS) in tight gas and oil reservoirs. J Nat Gas Sci Eng 81:103458. https://doi.org/10.1016/j.jngse.2020.103458
  • 3. Arianfar A, Ramezanzadeh A, Khalili M (2021) Numerical study of nonlinear fluid flow behavior in natural fractures adjacent to porous medium. J Petrol Sci Eng 204(3):108710. https://doi.org/10.1016/j.petrol.2021.108710
  • 4. Bisdom K, Bertotti G, Nick HM (2016) The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs. Tectonophysics 690:63–75. https://doi.org/10.1016/j.tecto.2016.04.006
  • 5. Cai MY, Su YL, Elsworth D, Li L, Fan LY (2021) Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR. Energy 225(1):120203. https://doi.org/10.1016/j.energy.2021.120203
  • 6. Caulk RA, Ghazanfari E, Perdrial JN, Perdrial N (2016) Experimental investigation of fracture aperture and permeability change within enhanced geothermal systems. Geothermics 62:12–21. https://doi.org/10.1016/j.geothermics.2016.02.003
  • 7. Chen YF, Zhou JQ, Hu SH, Hu R, Zhou CB (2015) Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures. J Hydrol 529:993–1006. https://doi.org/10.1016/j.jhydrol.2015.09.021
  • 8. Chen YD, Liang WG, Lian HJ, Yang JF, Nguyen VP (2017) Experimental study on the effect of fracture geometric characteristicson the permeability in deformable rough-walled fractures. Int J Rock Mech Min 98:121–140. https://doi.org/10.1016/j.ijrmms.2017.07.003
  • 9. Chen YD, Lian HJ, Liang WG, Yang JF, Nguyen VP, Bordas SPA (2019) The influence of fracture geometry variation on non-Darcy flow in fractures under confining pressurees. Int J Rock Mech Min 113:59–71. https://doi.org/10.1016/j.ijrmms.2018.11.017
  • 10. Chen YD, Selvadurai APS, Zhao ZH (2020) Modeling of flow characteristics in 3D rough rock fracture with geometry changes under confine stresses. Comput Geotech 130:103910. https://doi.org/10.1016/j.compgeo.2020.103910
  • 11. Cheng AL, Pahlevan NM, Rinderknecht DG, Wood JC, Gharib M (2018) Experimental investigation of the effect of non-Newtonian behavior of blood flow in the fontan circulation. Eur J Mech B-Fluids 68:184–192. https://doi.org/10.1016/j.euromechflu.2017.12.009
  • 12. Diwu PX, Liu TJ, You ZJ, Jiang BY, Zhou J (2018) Effect of low velocity non-Darcy flow on pressure response in shale and tight oil reservoirs. Fuel 216:398–406. https://doi.org/10.1016/j.fuel.2017.11.041
  • 13. Federico V (1997) Estimates of equivalent aperture for Non-Newtonian flow in a rough-walled fracture. Int J Rock Mech Min 34(007):1133–1137. https://doi.org/10.1016/S1365-1609(97)90205-7
  • 14. Gan L, Chen GY, Shen ZZ, Xu LQ, Zhang WB (2022) Modification method of seepage parameters for rough fractures based on digital image technique. J Petrol Sci Eng 209:109967. https://doi.org/10.1016/j.petrol.2021.109967
  • 15. Gudmundsson A, Kusumoto S, Simmenes TH, Philipp SL, Larsen B, Lotveit IF (2012) Effects of overpressure variations on fracture apertures and fluid transport. Tectonophysics 581:220–230. https://doi.org/10.1016/j.tecto.2012.05.003
  • 16. Guo PY, Wang M, He MC, Wang YW, Gao K, Gong WL (2020) Experimental investigation on macroscopic behavior and microfluidic field of nonlinear flow in rough-walled artificial fracture models. Ad Water Resour 142:103637. https://doi.org/10.1016/j.advwatres.2020.103637
  • 17. He XP, Sinan M, Kwak H, Hoteit H (2021) A corrected cubic law for single-phase laminar flow through rough-walled fractures. Ad Water Resour 154:103984. https://doi.org/10.1016/j.advwatres.2021.103984
  • 18. Kadhim FS, Al-Rbeawi S, Farman GM (2020) Integrated approach for non-Darcy flow in hydraulic fractures considering different fracture geometries and reservoir characteristics. Upstream Oil Gas Technol 5:100011. https://doi.org/10.1016/j.upstre.2020.100011
  • 19. Kochkin B, Malkovsky V, Yudintsev S, Petrov V, Ojovan M (2021) Problems and perspectives of borehole disposal of radioactive waste. Prog Nucl Energy 139(9):103867. https://doi.org/10.1016/j.pnucene.2021.103867
  • 20. Kong B, Chen S (2018) Numerical simulation of fluid flow and sensitivity analysis in rough-wall fractures. J Petrol Sci Eng 168:546–561. https://doi.org/10.1016/j.petrol.2018.04.070
  • 21. Li R, Zhang YC, Wu JH, Chen ZX (2020) Discontinuous finite volume element method for Darcy flows in fractured porous media. J Comput Appl Math 381:113025. https://doi.org/10.1016/j.cam.2020.113025
  • 22. Liu H, Birkholzer J (2012) On the relationship between water flux and hydraulic gradient for unsaturated and saturated clay. J Hydrol 475:242–247. https://doi.org/10.1016/j.jhydrol.2012.09.057
  • 23. Liu R, Li B, Jiang Y (2016) Critical hydraulic gradient for nonlinear flow through rock fracture networks: the roles of aperture, surface roughness, and number of intersections. Ad Water Resour 88:53–65. https://doi.org/10.1016/j.advwatres.2015.12.002
  • 24. Liu P, Liu A, Zhong FX, Jiang YD, Li JJ (2021b) Pore/fracture structure and gas permeability alterations induced by ultrasound treatment in coal and its application to enhanced coalbed methane recovery. J Petrol Sci Eng 205(5):108862. https://doi.org/10.1016/j.petrol.2021.108862
  • 25. Liu G, Zhou CW, Rao ZH, Liao SM (2021a) Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems. Renew Energy 171(2):492–504. https://doi.org/10.1016/j.renene.2021.02.070
  • 26. Luo Y, Zhang ZY, Wang YK, Nemcik J, Wang JH (2022) On fluid flow regime transition in rough rock fractures: insights from experiment and fluid dynamic computation. J Hydrol 607:127558. https://doi.org/10.1016/j.jhydrol.2022.127558
  • 27. Ma GW, Ma CL, Chen Y (2022a) An investigation of nonlinear flow behaviour along rough-walled fractures considering the effects of fractal dimensions and contact areas. J Nat Gas Sci Eng 104:104675. https://doi.org/10.1016/j.jngse.2022.104675
  • 28. Ma YQ, Gan Q, Zhang YJ, Yuan XB (2022b) Experimental study of heat transfer between fluid flowing through fracture surface with tortuous seepage path. Renew Energy 188:81–95. https://doi.org/10.1016/j.renene.2022.02.026
  • 29. Miller R, Low P (1963) Threshold gradient for water flow in clay systems. Soil Sci Soc Am J 27(006):605–609. https://doi.org/10.2136/sssaj1963.03615995002700060013x
  • 30. Nian T, Wang GW, Tan CQ, Fei LY, He WH, Wang S (2021) Hydraulic apertures of barren fractures in tight-gas sandstones at depth: image-core calibration in the lower Cretaceous Bashijiqike formation Tarim Basin. J Petrol Sci Eng 196(8):108016. https://doi.org/10.1016/j.petrol.2020.108016
  • 31. Ning Y, Luo ZQ, Li YL, Liu DQ, Zhang YY (2021) Alkaline leaching characteristics of uranium from Lincang coal: correlation with the dissolution of coal humic substances. Fuel 305:121507. https://doi.org/10.1016/j.fuel.2021.121507
  • 32. Pirzada MA, Bahaaddini M, Moradian O, Roshan H (2021) Evolution of contact area and aperture during the shearing process of natural rock fractures. Eng Geol 291:106236. https://doi.org/10.1016/j.enggeo.2021.106236
  • 33. Post DA, Crosbie RS, Viney NR, Peeters LJM, Zhang YQ, Herron NF, Wilkins A, Janardhanan S, Karim F, Aryal SK, Pena-Arancibia J, Lewis S, Evans T, Vaze J, Chiew FHS, Marvanek SP, Henderson B, Schmidt B, Herr A (2020) Impacts of coal mining and coal seam gas extraction on groundwater and surface water. J Hydrol 591(6):125281. https://doi.org/10.1016/j.jhydrol.2020.125281
  • 34. Quinn PM, Cherry JA, Parker BL (2019) Relationship between the critical Reynolds number and aperture for flow through single fractures: evidence from published laboratory studies. J Hydrol 581:124384. https://doi.org/10.1016/j.jhydrol.2019.124384
  • 35. Rong G, Tan J, Zhan HB, He RH, Zhang ZY (2020) Quantitative evaluation of fracture geometry influence on nonlinear flow in a single rock fracture. J Hydrol 589(1–2):125162. https://doi.org/10.1016/j.jhydrol.2020.125162
  • 36. Sasaki T, Rutqvist J (2021) Estimation of stress and stress-induced permeability change in a geological nuclear waste repository in a thermo-hydrologically coupled simulation. Comput Geotech 129:103866. https://doi.org/10.1016/j.compgeo.2020.103866
  • 37. Shu B, Zhu RJ, Tan JQ, Zhang SH, Liang M (2019) Evolution of permeability in a single granite fracture at high temperature. Fuel 242:12–22. https://doi.org/10.1016/j.fuel.2019.01.0314
  • 38. Singh KK, Singh DN, Ranjith PG (2015) Laboratory simulation of flow through single fractured granite. Rock Mech Rock Eng 48(3):987–1000
  • 39. Stoll M, Huber FM, Trumm M, Enzmann F, Meinel D, Wenka A, Schill E, Schäfer T (2019) Experimental and numerical investigations on the effect of fracture geometry and fracture aperture distribution on flow and solute transport in natural fractures. J Contam Hydrol 221:82–97. https://doi.org/10.1016/j.jconhyd.2018.11.008
  • 40. Sun Z, Wang L, Zhou JQ, Wang CS (2020) A new method for determining the hydraulic aperture of rough rock fractures using the support vector regression. Eng Geol 271:105618. https://doi.org/10.1016/j.enggeo.2020.105618
  • 41. Wang JP, Ma HC, Qian JZ, Feng PC, Tan XH, Ma L (2021) Experimental and theoretical study on the seepage mechanism characteristics coupling with confining pressure. Eng Geol 291(4):106224. https://doi.org/10.1016/j.enggeo.2021.106224
  • 42. Wu JJ, Zhang SH, Cao H, Zheng MM, Qu FL, Peng CW (2020) Experimental investigation of crack dynamic evolution induced by pulsating hydraulic fracturing in coalbed methane reservoir. J Nat Gas Sci Eng 75:103159. https://doi.org/10.1016/j.jngse.2020.103159
  • 43. Xiong F, Jiang QH, Ye ZY, Zhang XB (2018) Nonlinear flow behavior through rough-walled rock fractures: the effect of contact area. Comput Geotech 102:179–195. https://doi.org/10.1016/j.compgeo.2018.06.006
  • 44. Yao C, Shao YL, Yang JH, Huang F, He C, Jiang QH, Zhou CB (2020) Effects of non-Darcy flow on heat-flow coupling process in complex fractured rock masses. J Nat Gas Sci Eng 83:103536. https://doi.org/10.1016/j.jngse.2020.103536
  • 45. Yin PJ, Zhao C, Ma JJ, Yan CG, Huang LC (2020) Experimental study of non-linear fluid flow though rough fracture based on fractal theory and 3D printing technique. Int J Rock Mech Min 129:104293. https://doi.org/10.1016/j.ijrmms.2020.104293
  • 46. Zang QG, Ju Y, Gong WB et al (2015) Numerical simulations of seepage flow in rough single rock fractures. Petroleum 1(3):200–205. https://doi.org/10.1016/j.petlm.2015.09.003
  • 47. Zeng Z, Grigg R (2006) A criterion for non-Darcy flow in porous media. Transp Porous Med 63(1):57–69
  • 48. Zhang Y, Chai J (2020) Effect of surface morphology on fluid flow in rough fractures: a review. J Nat Gas Sci Eng 79:103343. https://doi.org/10.1016/j.jngse.2020.103343
  • 49. Zhang Z, Nemcik J (2013) Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. J Hydrol 477:139–151. https://doi.org/10.1016/j.jhydrol.2012.11.024
  • 50. Zhang Z, Nemcik J, Ma S (2013) Micro-and macro-behaviour of fluid flow through rock fractures: an experimental study. Hydrogeol J 21(8):1717–1729. https://doi.org/10.1007/s10040-013-1033-9
  • 51. Zhang W, Dai BB, Liu Z, Zhou CY (2017) A pore-scale numerical model for non-Darcy fluid flow through rough-walled fractures. Comput Geotech 87:139–148. https://doi.org/10.1016/j.compgeo.2017.02.011
  • 52. Zhang Q, Luo SH, Ma HC, Wang X, Qian JZ (2019) Simulation on the water flow affected by the shape and density of roughness elements in a single rough fracture. J Hydrol 573:456–468. https://doi.org/10.1016/j.jhydrol.2019.03.069
  • 53. Zhang X, Huang ZQ, Lei QH, Yao J, Gong L, Sun ZX, Yang WD, Yan X, Li Y (2021) Impact of fracture shear dilation on long-term heat extraction in enhanced geothermal systems: insights from a fully-coupled thermo-hydro-mechanical simulation. Geothermics 96:102216. https://doi.org/10.1016/j.geothermics.2021.102216
  • 54. Zhang AA, Yang J, Chen L, Ma CH (2022) A simulation study on stress-seepage characteristics of 3D rough single fracture based on fluid-structure interaction. J Petrol Sci Eng 211:110215. https://doi.org/10.1016/j.petrol.2022.110215
  • 55. Zhong Z, Wang L, Song LB, Gao C, Hu YJ, Gao HC, Song F, Dono AR, Lou R (2021) Size effect on the hydraulic behavior of fluid flow through a single rough-walled fracture. Soil Dyn Earthq Eng 143(11):106615. https://doi.org/10.1016/j.soildyn.2021.106615
  • 56. Zhou JQ, Hu SH, Fang S, Chen YF, Zhou CB (2015) Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min 80:202–218. https://doi.org/10.1016/j.ijrmms.2015.09.027
  • 57. Zhu J (2018) Effective aperture and orientation of fractal fracture network. Physica A 512:27–37. https://doi.org/10.1016/j.physa.2018.08.037
  • 58. Zou L, Tarasov BG, Dyskin AV, Adhikary DP, Pasternak E, Xu W (2013) Physical modelling of stress-dependent permeability in fractured rocks. Rock Mech Rock Eng 46(1):67–81
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa8c2463-48ca-4a49-a02d-c484c0be8431
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.