PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multi-spring model for buckling analysis of cracked Timoshenko nanobeams based on modified couple stress theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper develops a cracked nanobeam model and presents buckling analysis of this developed model based on a modified couple stress theory. The Timoshenko beam theory and simply supported boundary conditions are considered. This nonclassical model contains a material length scale parameter and can interpret the size effect. The cracked nanobeam is modeled as two segments connected by two equivalent springs (longitudinal and rotational). This model promotes discontinuity in rotation of the beam and additionally considers discontinuity in longitudinal displacement due to presence of the crack. Therefore, this multi-spring model can consider coupled effects between the axial force and bending moment at the cracked section. The generalized differential quadrature (GDQ) method is employed to discretize the governing differential equations, boundary and continuity conditions. The influences of crack location, crack severity, material length scale parameter and flexibility constants of the presented spring model on the critical buckling load are studied.
Rocznik
Strony
1127--1139
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran
autor
  • Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran
Bibliografia
  • 1. Adams R.D., Cawley P., Pye C.J., Stone B.J., 1978, A vibration technique for non-destructive assessing the integrity of structures, Journal of Mechanical Engineering Science, 20, 93-100
  • 2. Akbarzadeh Khorshidi M., Shariati M., 2015, A modified couple stress theory for postbuckling analysis of Timoshenko and Reddy-Levinson single-walled carbon nanobeams, Journal of Solid Mechanics, 7, 4, 364-373
  • 3. Akbarzadeh Khorshidi M., Shariati M., 2016a, An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory, Waves in Random and Complex Media, 26, 243-258, DOI: 10.1080/17455030.2015.1137375
  • 4. Akbarzadeh Khorshidi M., Shariati M., 2016b, Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38, 2607-261, DOI: 10.1007/s40430-015-0388-3
  • 5. Asghari M., Kahrobaiyan M.H., Ahmadian M.T., 2010, A nonlinear Timoshenko beam formulation based on the modified couple stress theory, International Journal of Engineering Science, 48, 1749-1761, DOI: 10.1016/j.ijengsci.2010.09.025
  • 6. Bellman R., Kashef B.G., Casti J., 1972, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of Computer and Physics, 10, 40-52
  • 7. Chati M., Rand R., Mukherjee S., 1007, Modal analysis of a cracked beam, Journal of Sound and Vibration, 207, 2, 249-270
  • 8. Chaudhari T.D., Maiti S.K., 2000, A study of vibration of geometrically segmented beams with and without crack, International Journal of Solids and Structures, 37, 761-779
  • 9. Dehrouyeh-Semnani A.M., Dehrouyeh M., Zafari-Koloukhi H., Ghamami M., 2015, Size-dependent frequency and stability characteristics of axially moving microbeams based on modified couple stress theory, International Journal of Engineering Science, 97, 98-112, DOI: 10.1016/j.ijengsci.2015.09.003
  • 10. El Bikri K., Benamar R., Bennouna M.M., 2006, Geometrically non-linear free vibrations of clamped-clamped beams with an edge crack, Computers and Structures, 84, 485-502, DOI: 10.1016/j.compstruc.2005.09.030
  • 11. Freund L.B., Herrmann G., 1978, Dynamic fracture of a beam or plate in plane bending, Journal of Applied Mechanic, 76-APM-15, 112
  • 12. Hasheminejad S.M., Gheshlaghi B., Mirzai Y., Abbasion S., 2011, Free transverse vibrations of cracked nanobeams with surface effects, Thin Solid Films, 519, 2477-2482, DOI: 10.1016/j.tsf.2010.12.143
  • 13. Hosseini-Hashemi Sh., Fakher M., Nazemnezhad R., Sotoude Haghighi M.H., 2014, Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects, Composites: Part B, 61, 66-72, DOI: 10.1016/j.compositesb.2014.01.031
  • 14. Hsu J.Ch., Lee H.L., Chang W.J., 2011, Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory, Current Applied Physics, 11, 1384-1388, DOI: 10.1016/j.cap.2011.04.026
  • 15. Ke L.L., Wang Y.Sh., 2011, Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory, Composite Structures, 93, 342-350, DOI: 10.1016/j.compstruct.2010.09.008
  • 16. Ke L.L., Yang J., Kitipornchai S., 2009, Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening, Composite Structures, 90, 152-160, DOI: 10.1016/j.compstruct.2009.03.003
  • 17. Kitipornchai S., Ke L.L., Yang J., Xiang Y., 2009, Nonlinear vibration of edge cracked functionally graded Timoshenko beams, Journal of Sound and Vibration, 324, 962-982, DOI: 10.1016/j.jsv.2009.02.023
  • 18. Krawczuk M., Palacz M., Ostachowicz W., 2003, The dynamic analysis of cracked Timoshenko beams by spectral element method, Journal of Sound and Vibration, 264, 1139-1153
  • 19. Lele S.P., Maiti S.K., 2002, Modelling of transverse vibration of short beams for crack detection and measurement of crack extension, Journal of Sound and Vibration, 257, 3, 559-583, DOI: 10.1006/jsvi.5059
  • 20. Loya J.A., Aranda-Ruiz J., Fernandez-Saez J., 2014, Torsion of cracked nanorods using a nonlocal elasticity model, Journal of Physics D: Applied Physics, 47, 115304, DOI: 10.1088/0022- -3727/47/11/115304
  • 21. Loya J., Lopez-Puente J., Zaera R., Fernandez-Saez J., 2009, Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model, Journal of Applied Physics, 105, 044309, DOI: 10.1063/1.3068370
  • 22. Loya J.A., Rubio L., Fernandez-Saez J., 2006, Natural frequencies for bending vibrations of Timoshenko cracked beams, Journal of Sound and Vibration, 290, 640-653, DOI: 10.1016/j.jsv.2005.04.005
  • 23. Ma H.M., Gao X.-L., Reddy J.N., 2008, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 56, 3379-3391, DOI: 10.1016/j.jmps.2008.09.007
  • 24. Ma H.M., Gao X.-L., Reddy J.N., 2010, A nonclassical Reddy-Levinson beam model based on a modified couple stress theory, Journal for Multiscale Computational Engineering, 8, 2, 167-180
  • 25. Mohammad-Abadi M., Daneshmehr A.R., 2014, Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions, International Journal of Engineering Science, 74, 1-14, DOI: 10.1016/j.ijengsci.2013.08.010
  • 26. Mohammad-Abadi M., Daneshmehr A.R., 2015, Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories, International Journal of Engineering Science, 87, 83-102, DOI: 10.1016/j.ijengsci.2014.11.003
  • 27. Okamura H., Watanabe K., Takano T., 1973, Applications of compliance concept in fracture mechanics, [In:] Progress in Flaw Growth and Fracture Toughness Testing, 536, J.G. Kaufman (Edit.), American Society for Testing and Materials, Philadelphia, 423-438
  • 28. Park S.K., Gao X.-L., 2006, Bernoulli-Euler beam model based on a modified couple stress theory, Journal Micromechanics and Microengineering, 16, 2355-2359
  • 29. Park S.K., Gao X.-L., 2008, Variational formulation of a modified couple stress theory and its application to a simple shear problem, Zeitschrift fur angewandte Mathematik und Physik, 59, 904-917
  • 30. Rice J.R., 1972, The line spring model for surface flaws, [In:] The Surface Crack, Swedlow J.L. (Edit.), ASME, New York
  • 31. Rice J.R., Levy N., 1972, The part-through surface crack in an elastic plate, Journal of Applied Mechanics, 39, Trans. ASME, Series E, 94, 185-194
  • 32. Shu C., 1991, Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation, Ph.D. Thesis, University of Glasgow
  • 33. Shu C., Du H., 1997, Implement of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, International Journal of Solids and Structures, 19, 59-68
  • 34. Simsek M., 2010, Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory, International Journal of Engineering Science, 48, 1721-1732, DOI: 10.1016/j.ijengsci.2010.09.027
  • 35. Tharp T., 1987, A finite element for edge-cracked beam columns, International Journal for Numerical Methods in Engineering, 24, 1941-1950
  • 36. Torabi K., Nafar Dastgerdi J., 2012, An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model, Thin Solid Films, 520, 6595-6602, DOI: 10.1016/j.tsf.2012.06.063
  • 37. Xia W., Wang L., Yin L., 2010, Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration, International Journal of Engineering Science, 48, 12, 2044-2053, DOI: 10.1016/j.ijengsci.2010.04.010
  • 38. Yan T., Kitipornchai S., Yang J., 2011, Parametric instability of functionally graded beams with an open edge crack under axial pulsating excitation, Composite Structures, 93, 1801-1808, DOI: 10.1016/j.compstruct.2011.01.019
  • 39. Yang F., Chong A.M., Lam D.C.C., Tong P., 2012, Couple stress based strain gradient theory of elasticity, International Journal of Solids and Structures, 39, 2731-2743, DOI: 10.1016/S0020- -7683(02)00152-X
  • 40. Yang J., Chen Y., 2008, Free vibration and buckling analyses of functionally graded beams with edge cracks, Composite Structures, 83, 48-60, DOI: 10.1016/j.compstruct.2007.03.006
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa8c16a3-da1d-48fd-8350-2338dc5d37a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.