Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Motivated by the idea which has been introduced by Boulaaras and Guefaifia [S. Boulaaras and R. Guefaifia, Existence of positiveweak solutions for a class of Kirchhoff elliptic systems with multiple parameters, Math. Methods Appl. Sci. 41 (2018), no. 13, 5203-5210] and by Afrouzi and Shakeri [G. A. Afrouzi, S. Shakeri and N. T. Chung, Existence of positive solutions for variable exponent elliptic systems with multiple parameters, Afr. Mat. 26 (2015), no. 1-2, 159-168] combined with some properties of Kirchhoff-type operators, we prove the existence of positive solutions for a new class of nonlocal p(x)-Kirchhoff parabolic systems by using the sub- and super-solutions concept.
Wydawca
Czasopismo
Rocznik
Tom
Strony
49--58
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Department of Mathematics and Computer Science, Larbi Tebessi University, 12002 Tebessa
- Laboratory of Mathematics, Informatics and Systems (LAMIS), Larbi Tebessi University, 12002 Tebessa, Algeria
autor
- Department of Mathematics and Computer Science, Larbi Tebessi University, 12002 Tebessa, Algeria
autor
- Department of Mathematics, College of Sciences and Arts, Al-Rass, Qassim University, Al-Mulida, Qassim, Kingdom of Saudi Arabia
- Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Algeria
Bibliografia
- [1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259.
- [2] G. A. Afrouzi, N. T. Chung and S. Shakeri, Existence of positive solutions for Kirchhoff type equations, Electron. J. Differential Equations 2013 (2013), Paper No. 180.
- [3] G. A. Afrouzi, S. Shakeri and N. T. Chung, Existence of positive solutions for variable exponent elliptic systems with multiple parameters, Afr. Mat. 26 (2015), no. 1-2, 159-168.
- [4] Y. Bouizem, S. Boulaaras and B. Djebbar, Existence of positive solutions for a class of Kirrchoff elliptic systems with right hand side defined as a multiplication of two separate functions, Kragujevac J. Math. 45 (2019), no. 4, 587-596.
- [5] Y. Bouizem, S. Boulaaras and B. Djebbar, Some existence results for an elliptic equation of Kirchhoff-type with changing sign data and a logarithmic nonlinearity, Math. Methods Appl. Sci. 42 (2019), no. 7, 2465-2474.
- [6] S. Boulaaras, A well-posedness and exponential decay of solutions for a coupled Lamé system with viscoelastic term and logarithmic source terms, Appl. Anal. (2019), DOI 10.1080/00036811.2019.1648793.
- [7] S. Boulaaras, Some existence results for elliptic Kirchhoff equation with changing sign data and a logarithmic nonlinearity, J. Intell. Fuzzy Syst. (2019), DOI 10.3233/JIFS-190885.
- [8] S. Boulaaras, Existence of positive solutions for a new class of Kirchhoff parabolic systems, Rocky Mountain J. Math., to appear; https://projecteuclid.org/euclid.rmjm/1572836541.
- [9] S. Boulaaras and R. Guefaifia, Existence of positive weak solutions for a class of Kirchhoff elliptic systems with multiple parameters, Math. Methods Appl. Sci. 41 (2018), no. 13, 5203-5210.
- [10] S. Boulaaras, R. Guefaifia and T. Bouali, Existence of positive solutions for a class of quasilinear singular elliptic systems involving Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions, Indian J. Pure Appl. Math. 49 (2018), no. 4, 705-715.
- [11] S. Boulaaras, R. Guefaifia and S. Kabli, An asymptotic behavior of positive solutions for a new class of elliptic systems involving of (p(x), q(x))-Laplacian systems, Bol. Soc. Mat. Mex. (3) 25 (2019), no. 1, 145-162.
- [12] S. Boulaaras and M. Haiour, L∞-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem, Appl. Math. Comput. 217 (2011), no. 14, 6443-6450.
- [13] S. Boulaaras and M. Haiour, The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms, Indag. Math. (N.S.) 24 (2013), no. 1, 161-173.
- [14] N. Boumaza and S. Boulaaras, General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel, Math. Methods Appl. Sci. 41 (2018), no. 16, 6050-6069.
- [15] M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. 30 (1997), no. 7, 4619-4627.
- [16] X. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), no. 2, 397-417.
- [17] X. Fan and D. Zhao, The quasi-minimizer of integral functionals with m(x) growth conditions, Nonlinear Anal. 39 (2000), no. 7, 807-816.
- [18] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), no. 2, 424-446.
- [19] R. Guefaifia and S. Boulaaras, Existence of positive solutions for a class of (p(x), q(x))-Laplacian systems, Rend. Circ. Mat. Palermo (2) 67 (2018), no. 1, 93-103.
- [20] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
- [21] B. Mairi, R. Guefaifia, S. Boulaaras and T. Bouali, Existence of positive solutions for a new class of nonlocal p(x)-Kirchhoff elliptic systems via sub-super solutions concept, Appl. Sci. 20 (2018), 117-128.
- [22] H. Medekhel, S. Boulaaras and R. Guefaifia, Existence of positive solutions for a class of Kirchhoff parabolic systems with multiple parameters, Appl. Math. E-Notes 18 (2018), 295-307.
- [23] F. Mesloub and S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, J. Appl. Math. Comput. 58 (2018), no. 1-2, 647-665.
- [24] N. Mezouar and S. Boulaaras, Global existence of solutions to a viscoelastic non-degenerate Kirchhoff equation, Appl. Anal. (2018), DOI 10.1080/00036811.2018.1544621.
- [25] N. Thanh Chung, Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities, Complex Var. Elliptic Equ. 58 (2013), no. 12, 1637-1646.
- [26] Q. Zhang, Existence of positive solutions for a class of p(x)-Laplacian systems, J. Math. Anal. Appl. 333 (2007), no. 2, 591-603.
- [27] Q. Zhang, Existence of positive solutions for elliptic systems with nonstandard p(x)-growth conditions via sub-supersolution method, Nonlinear Anal. 67 (2007), no. 4, 1055-1067.
- [28] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv. 29 (1987), 33-36.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa83e120-7691-4188-8f15-998794153fd8