PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer-aided detection of mesial temporal sclerosis based on hippocampus and cerebrospinal fluid features in MR images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mesial temporal sclerosis (MTS) is the commonest brain abnormalities in patients with intractable epilepsy. Its diagnosis is usually performed by neuroradiologists based on visual inspection of magnetic resonance imaging (MRI) scans, which is a subjective and time-consuming process with inter-observer variability. In order to expedite the identification of MTS, an automated computer-aided method based on brain MRI characteristics is proposed in this paper. It includes brain segmentation and hippocampus extraction followed by calculating features of both hippocampus and its surrounding cerebrospinal fluid. After that, support vector machines are applied to the generated features to identify patients with MTS from those without MTS. The proposed technique is developed and evaluated on a data set comprising 15 normal controls, 18 left and 18 right MTS patients. Experimental results show that subjects are correctly classified using the proposed classifiers with an accuracy of 0.94 for both left and right MTS detection. Overall, the proposed method could identify MTS in brain MR images and show a promising performance, thus showing its potential clinical utility.
Twórcy
autor
  • Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
  • Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
  • Department of Electrical and Computer Engineering, 11-203 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
Bibliografia
  • [1] Malmgren K, Thom M. Hippocampal sclerosis – origins and imaging. Epilepsia 2012;53(Suppl. 4):19–33.
  • [2] Camacho DLA, Castillo M. MR imaging of temporal lobe epilepsy. Semin Ultrasound CT MRI 2007;28(6):424–36.
  • [3] Shinnar S. Febrile seizures and mesial temporal sclerosis. Epilepsy Curr 2003;3(July):115–8.
  • [4] Free S, Bergin P, Fish D, Cook M, Shorvon S, Stevens J. Methods for normalization of hippocampal volumes measured with MR. Am J Neuroradiol 1995;16(4):637–43.
  • [5] Hammers A, Heckemann R, Koepp MJ, Duncan JS, Hajnal JV, Rueckert D, et al. Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: a proof-of-principle study. Neuroimage 2007;36(1):38–47.
  • [6] Wiebe S, Blume WT, Girvin JP, Eliasziw M, Randomized A. Controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001;345(5):311–8.
  • [7] Kumlien E, Doss RC, Gates JR. Treatment outcome in patients with mesial temporal sclerosis. Seizure 2002; 11(7):413–7.
  • [8] Hogan RE, Bucholz RD, Joshi S. Hippocampal deformation- based shape analysis in epilepsy and unilateral mesial temporal sclerosis. Epilepsia 2003;44(6):800–6.
  • [9] Mumoli L, Labate A, Vasta R, Cherubini A, Ferlazzo E, Aguglia U, et al. Detection of hippocampal atrophy in patients with temporal lobe epilepsy: a 3-Tesla MRI shape. Epilepsy Behav 2013;28(3):489–93.
  • [10] Kohan Z, Azmi R. Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging.Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging; vol. 9788. 2016. p. 97882T.
  • [11] Focke NK, Thompson PJ, Duncan JS. Correlation of cognitive functions with voxel-based morphometry in patients with hippocampal sclerosis. Epilepsy Behav 2008;12(3):472–6.
  • [12] Tai X, Bernhardt B, Thom M, Thompson P, Baxendale S, Koepp M, et al. Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: Clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 2018;44(1):70–90.
  • [13] Bonilha L, Halford JJ, Rorden C, Roberts DR, Rumboldt Z, Eckert MA. Automated MRI analysis for identification of hippocampal atrophy in temporal lobe epilepsy. Epilepsia 2009;50(2):228–33.
  • [14] Jafari-Khouzani K, Elisevich K, Patel S, Smith B, Soltanian- Zadeh H. FLAIR signal and texture analysis for lateralizing mesial temporal lobe epilepsy. Neuroimage 2010;49 (2):1559–71.
  • [15] Jafari-Khouzani K, Elisevich K, Karvelis KC, Soltanian- Zadeh H. Quantitative multi-compartmental SPECT image analysis for lateralization of temporal lobe epilepsy. Epilepsy Res 2011;95(1):35–50.
  • [16] Focke NK, Yogarajah M, Symms MR, Gruber O, Paulus W, Duncan JS. Automated MR image classification in temporal lobe epilepsy. Neuroimage 2012;59:356–62.
  • [17] Cantor-Rivera D, Khan AR, Goubran M, Mirsattari SM, Peters TM. Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging. Comput Med Imaging Graph 2015;41:14–28.
  • [18] Rudie JD, Colby JB, Salamon N. Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Res 2015;117:63–9.
  • [19] Holodny AI, George AE, Golomb J, de Leon M, Kalnin AJ. The perihippocampal fissures: normal anatomy and disease states. Radiographics 1998;18(3):653–65.
  • [20] Hosseini MP, Nazem-Zadeh MR, Pompili D, Jafari-Khouzani K, Elisevich K, Soltanian-Zadeh H. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients. Med Phys 2016;43(1):538–53.
  • [21] Henry Ford Hospital. Temporal lobe epilepsy multiple modality data; 2017, https://www.nitrc.org/projects/hfh_t1_hp_seg1 [accessed 28 August 2017].
  • [22] Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20(January (1)):45–57.
  • [23] Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23:S208–19.
  • [24] Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011;56(3):907–22.
  • [25] Suzuki M, Hagino H, Nohara S, Zhou SY, Kawasaki Y, Takahashi T, et al. Male-specific volume expansion of the human hippocampus during adolescence. Cereb Cortex 2004;15(2):187–93.
  • [26] Jenkins R, Fox NC, Rossor AM, Harvey RJ, Rossor MN. Intracranial volume and alzheimer disease: evidence against the cerebral reserve hypothesis. Arch Neurol 2000;57(2):220–4.
  • [27] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273–97.
  • [28] Platt JC, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification. Advances in neural information processing systems. 2000;547–53.
  • [29] Jr DWH, Lemeshow S. Applied logistic regression. 2nd ed. Wiley; 2005.
  • [30] Dasarathy BV. Nearest neighbor: pattern classification technique. IEEE Computer Society; 1990.
  • [31] Bland M. An introduction to medical statistics. Oxford University Press (UK); 2015.
  • [32] Armstrong D. The neuropathology of temporal lobe epilepsy. J Neuropathol Exp Neurol 1993;52(September (5)):433–43.
  • [33] Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970;12(1):55–67.
  • [34] Jackson GD, Berkovic SF, Duncan JS, Connelly A. Optimizing the diagnosis of hippocampal sclerosis using MR imaging. Am J Neuroradiol 1993;14(3):753–62.
  • [35] Farid N, Girard HM, Kemmotsu N, Smith ME, Magda SW, Lim WY, et al. Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy. Radiology 2012;264(2):542–50.
  • [36] Guo L, Zhao L, Wu Y, Li Y, Xu G, Yan Q. Tumor detection in MR images using one-class immune feature weighted SVMs. IEEE Trans Magn 2011;47(10):3849–52.
  • [37] Nanthagopal AP, Sukanesh R. Wavelet statistical texture features-based segmentation and classification of brain computed tomography images. IET Image Proc 2013;7(1):25–32.
  • [38] Loizou CP, Murray V, Pattichis MS, Seimenis I, Pantziaris M, Pattichis CS. Multiscale amplitude-modulation frequency- modulation texture analysis of multiple sclerosis in brain MRI images. IEEE Trans Inf Technol Biomed 2011;15(January (1)):119–29.
  • [39] Yu Y, Guo D, Lou M, Liebeskind DS, Scalzo F. Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI. IEEE Trans Biomed Eng 2017;PP(99):1.
  • [40] Cuingnet R, Rosso C, Lehéricy S, Dormont D, Benali H, Samson Y, et al. Spatially regularized SVM for the detection of brain areas associated with stroke outcome. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2010. p. 316–23.
  • [41] Forkert ND, Illies T, Goebell E, Fiehler J, Säring D, Handels H. Computer-aided nidus segmentation and angiographic characterization of arteriovenous malformations. Int J Comput Assist Radiol Surg 2013;8(September (5)):775–86.
  • [42] Oermann EK, Rubinsteyn A, Ding D, Mascitelli J, Starke RM, Bederson JB, et al. Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations. Sci Rep 2016;6:21161.
  • [43] Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER. Optimal number of features as a function of sample size for various classification rules. Bioinformatics 2004;21(8):1509–15.
  • [44] Wang Y, Fan Y, Bhatt P, Davatzikos C. High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. Neuroimage 2010;50(4):1519–35.
  • [45] Braga B, Yasuda CL, Cendes F. White matter atrophy in patients with mesial temporal lobe epilepsy: voxel-based morphometry analysis of T1-and T2-weighted MR images. Radiol Res Pract 2012;2012:1–8.
  • [46] Kerr WT, Nguyen ST, Cho AY, Lau EP, Silverman DH, Douglas PK, et al. Computer-aided diagnosis and localization of lateralized temporal lobe epilepsy using interictal FDG-PET. Front Neurol 2013;4:31.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa7a2de3-0bf0-4196-96a0-f1b1c1bb7883
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.