Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sugar palm starch waste (SPSW) was biomass that produce from processing of sugar palm starch. SPSW contain high cellulose, hemicellulose, and lignin. Using lignocellulose from SPSW needs a pretreatment method to obtain highpurity cellulose and create an environmentally friendly method. The investigation focuses on determining the optimal NaOH concentration, temperature, and duration for hydrothermal-alkali treatment to remove hemicellulose and lignin, achieving high-purity cellulose. There is no further research regarding optimal conditions related to NaOH concentration, temperature, and duration for hydrothermal-alkali treatment to remove hemicellulose and lignin, achieving high-purity cellulose. This study aims to define optimal conditions for lignin and hemicellulose removal to obtain cellulose with high purity. The delignification process is carried out by hydrothermal and hydrothermal alkali activation. The hydrothermal activation removes hemicellulose, whereas the hydrothermal alkali activation removes lignin. In this study, Response surface methodology (RSM) was used to determine optimum conditions. The results were then structural and morphological identification using XRD, FTIR, and SEM. The optimization results obtained parameter values of 2% NaOH, temperature 120 °C for 120 minutes. The desirability value was 0.774, with a response value of 2.9 ± 1.7% for hemicellulose, 92.35 ± 1.06% for cellulose, and 2.45 ± 0.1% for lignin. FTIR results showed that lignin was absent during the delignification process. Meanwhile, in XRD, during the delignification process, the crystallization index (CI) decreases, and the crystallization size (CS) increases. SEM analysis results show that the morphology of the delignified SPSW becomes smoother after pretreatment, which indicates a decrease in hemicellulose and lignin content and a high level of cellulose purity. Further research is needed on other parameters, such as cellulose yield, energy consumption, and environmental impact. This research should also consider other potential pretreatment factors, such as pressure and catalysts in the hydrothermal process.
Wydawca
Rocznik
Tom
Strony
359--367
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Department of Agroindustrial Technology, Faculty of Agriculture, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
- Doctoral Programme of Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
autor
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
autor
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
Bibliografia
- 1. Aisyadea, F., Dewi, G.K., Widyorini, R.. 2023. Selected properties of particleboard made from sugar palm (Arenga pinnata) dregs. Journal of the Korean Wood Science and Technology 51, 334–344. https://doi.org/10.5658/WOOD.2023.51.5.334
- 2. Nazaruddin, A., Azis, A.D., Fudholi, A.. 2021. Enhancement of bioethanol production from palm sap (Arenga pinnata (Wurmb) Merr) through optimization of Saccharomyces cerevisiae as an inoculum. Journal of Materials Research and Technology 14, 548–554. https://doi.org/10.1016/j.jmrt.2021.06.085
- 3. Dayatmo, D., HS, H. 2015. Pembuatan bieothanol dari limbah ampas pati aren dengan metode hidrolisis enzimatis menggunakan enzim ligninolitik dari jamur pelapuk putih. Konversi 4.
- 4. Erliana, W.H., Widjaja, T., Altway, A., Pudjiastuti, L.. 2020. Synthesis of lactic acid from sugar palm trunk waste (Arenga pinnata): Preliminary hydrolysis and fermentation studies. Biodiversitas 21, 2281–2288. https://doi.org/10.13057/biodiv/d210559
- 5. Fiorentini, C., Bassani, A., Duserm Garrido, G., Merino, D., Perotto, G., Athanassiou, A., Peräntie, J., Halonen, N., Spigno, G.. 2022. High-pressure autohydrolysis process of wheat straw for cellulose recovery and subsequent use in PBAT composites preparation. Biocatal Agric Biotechnol 39. https://doi.org/10.1016/j.bcab.2022.102282
- 6. Fitriana, N.E., Suwanto, A., Jatmiko, T.H., Mursiti, S., Prasetyo, D.J. 2020. Cellulose extraction from sugar palm (Arenga pinnata) fibre by alkaline and peroxide treatments, in: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/462/1/012053
- 7. Han, S.Y., Park, C.W., Endo, T., Febrianto, F., Kim, N.H., Lee, S.H. 2020. Extrusion process to enhance the pretreatment effect of ionic liquid for improving enzymatic hydrolysis of lignocellulosic biomass. Wood Sci Technol 54, 599–613. https://doi.org/10.1007/s00226-020-01170-9
- 8. Ilyas, R.A., Sapuan, S.M., Atiqah, A., Ibrahim, R., Abral, H., Ishak, M.R., Zainudin, E.S., Nurazzi, N.M., Atikah, M.S.N., Ansari, M.N.M., Asyraf, M.R.M., Supian, A.B.M., Ya, H. 2020. Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym Compos 41, 459–467. https://doi.org/10.1002/pc.25379
- 9. Imraan, M., Ilyas, R.A., Norfarhana, A.S., Bangar, S.P., Knight, V.F., Norrrahim, M.N.F. 2023. Sugar palm (Arenga pinnata) fibers: new emerging natural fibre and its relevant properties, treatments and potential applications. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2023.04.056
- 10. Jiang, Z., Hu, D. 2019. Molecular mechanism of anionic dyes adsorption on cationized rice husk cellulose from agricultural wastes. J Mol Liq 276, 105– 114. https://doi.org/10.1016/j.molliq.2018.11.153
- 11. Keshav, P.K., Banoth, C., Kethavath, S.N., Bhukya, B. 2023. Lignocellulosic ethanol production from cotton stalk: an overview on pretreatment, saccharification and fermentation methods for improved bioconversion process. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01468-z
- 12. Khalili, F., Amiri, H. 2020. Integrated processes for production of cellulosic and hemicellulosic biobutanol from sweet sorghum bagasse using autohydrolysis. Ind Crops Prod 145. https://doi.org/10.1016/j.indcrop.2019.111918
- 13. Li, J., Feng, P., Xiu, H., Zhang, M., Li, Jingyu, Du, M., Zhang, X., Kozliak, E., Ji, Y. 2020. Wheat straw components fractionation, with efficient delignification, by hydrothermal treatment followed by facilitated ethanol extraction. Bioresour Technol 316. https://doi.org/10.1016/j.biortech.2020.123882
- 14. Liu, Q., Cui, M., Li, X., Wang, J., Wang, Z., Li, L., Lyu, X. 2022. Alkali-hydrothermal activation of mine tailings to prepare one-part geopolymer: Activation mechanism, workability, strength, and hydration reaction. Ceram Int 48, 30407–30417. https://doi.org/10.1016/j.ceramint.2022.06.318
- 15. Maryana, R., Ma’rifatun, D., Wheni, I.A., K.W., S., Rizal, W.A. 2014. Alkaline pretreatment on sugar palm bagasse for bioethanol production, in: Energy Procedia. Elsevier Ltd, 250–254. https://doi.org/10.1016/j.egypro.2014.01.221
- 16. Morales, A., Labidi, J., Gullón, P. 2022. Integral valorisation of walnut shells based on a three-step sequential delignification. J Environ Manage 310. https://doi.org/10.1016/j.jenvman.2022.114730
- 17. Purnawan. 2011. pemanfaatan limbah serat industri tepung sagu aren sebagai bahan baku pembuatan kertas (PULP) dengan proses delignifikasi. Jurnal Teknologi Technoscientia 4.
- 18. Sai Bharadwaj, A.V.S.L., Dev, S., Zhuang, J., Wang, Y., Yoo, C.G., Jeon, B.H., Aggarwal, S., Park, S.H., Kim, T.H. 2023. Review of chemical pretreatment of lignocellulosic biomass using low-liquid and low-chemical catalysts for effective bioconversion. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.128339
- 19. Scherzinger, M., Kaltschmitt, M. 2019. Heat induced pre-treatment technologies for lignocellulosic biomass. A comparison of different processes and techniques. Journal of Ecological Engineering 20, 134– 146. https://doi.org/10.12911/22998993/109876
- 20. Wang, P., Liu, C., Chang, J., Yin, Q., Huang, W., Liu, Y., Dang, X., Gao, T., Lu, F. 2019. Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw. Renew Energy 138, 502–508. https://doi.org/10.1016/j.renene.2019.01.118
- 21. Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D. 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A minireview. Appl Energy. https://doi.org/10.1016/j. apenergy.2012.12.019
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa787c56-f80d-4e66-8610-be77683541a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.