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Summary 

This paper describes the application of differential geometry and nonlinear systems analysis to the 

estimation of friction effects in a class of mechanical systems. The proposed methodology relies on 

adaptive filters, designed with a nonlinear geometric approach to obtain the disturbance de coupling 

property, for the estimation of the friction force. Thanks to accurate estimation, friction effects are 

compensated by injecting the on line estimate of friction force to the control action calculated by a 

standard linear state feedback. The inverted pendulum on a cart is considered as an application example 

and the proposed approach is compared with a commonly used friction compensation strategy, based on 

an explicit model of the friction force. 
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INTRODUCTION 

  

Feedback control systems for engineering 

applications are often affected by friction in 

mechanical components. Detailed modeling of 

friction effects has been the subject of many 

research activities [1] and the inverted pendulum 

system is commonly adopted as a benchmark for 

control design including friction compensation [2]. 

The most  challenging problem for on-line 

estimation of friction is the identification of 

modelling parameters, which are mostly not directly 

measurable and possibly varying in time. Therefore, 

there is a growing demand for robust and adaptive 

algorithms for friction estimation and compensation. 

This problem has been addressed in literature 

also as a fault tolerant control problem [3]. A fault

tolerant control system can include a Fault Detection 

and Diagnosis (FDD) module [4], which is mainly 

used to fulfil the requirement of fault estimation and 

allow the controller to react to the system 

component failures actively, by reconfiguring its 

actions so that the stability and acceptable 

performance of the entire system can be maintained. 

This kind of structure is classified as an Active 

Fault-Tolerant Control Scheme (AFTCS). 

This paper is focused on the application of an 

AFTCS to address the problem of friction 

compensation. The proposed AFCTS integrates a 

reliable and robust friction estimation module, 

implemented according to an FDD procedure 

relying on adaptive filters. The controller 

reconfiguration exploits a second control loop 

depending on the on line estimate of the friction 

force. The advantages of this strategy are that a 

structure of logic based switching controller is not 

required and, instead, an existing controller can be 

preserved and enhanced. 

The FDD method is based on the Nonlinear 

Geometric Approach (NLGA) developed in [5]. By 

means of this framework, a disturbance de coupled 

adaptive nonlinear filter providing the fault 

identification is designed. It is worth observing that 

the original NLGA FDD scheme of [5], based on 

residual signals, cannot provide fault size 

estimation. 

Both the NLGA Adaptive Filters (NLGA AF) 

and the AFTCS strategy are applied to an inverted 

pendulum on a cart (also called cart pole system), 

an underactuated mechanical structure that is 

commonly used as a benchmark system for control 

design and mechatronics prototyping. A simulation 

model for the complete AFTCS loop has been 

implemented in the Matlab/Simulink , 

and tested in the presence of nonlinear friction, 

disturbances, measurement noise and modelling 

errors. 

The work proceeds with Section 1, providing the 

description of the cart pole nonlinear benchmark 

system, Section 2, describing the implementation of 

the FDD scheme and the structure of the AFTCS 

strategy, and Section 3, in which stability, 

robustness and advantages of the AFTCS method 

over simpler friction compensators are investigated 

with simulations. Section 5 summarises 

contributions and achievements of the paper. 

  

1. THE CART POLE NONLINEAR MODEL 

  

The dynamic model of a pendulum (or pole) on a 

cart shown in Fig. 1 is a classical benchmark in 

Systems and Control Theory. 
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Fig. 1: Schematized cart-pole system 

 

The interest in this mechanical system is 

motivated by the similarity between its dynamic 

properties and those of several real world 

engineering applications like, for example, 

aerospace vehicles during vertical take off, cranes, 

and many others. Assuming that the cart has mass M 

and the pendulum mass m is concentrated at the tip 

of a pole, with neglectable inertia, of length L, the 

dynamic model obtained 

is the following:  
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in which g is the gravity constant, Fa is the 

controllable actuator force, Ffric is the friction 

involved by the contact between cart and ground, 

 is a torque acting directly at the base of the 

pole. The state variables are x=[x1 x2 x3 x4]
T = 

[ px px ]T and the control input is u = Fa, while 

d =  is considered as a disturbance, so that  the 

model can be rewritten in the following state space 

input affine form: 
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It is worth noting that considering  

torque acting at the base on the pole) as a 

disturbance terms represents a realistic situation, 

since it may be related to the effect of an impact 

between the pole and some kind of obstacle. 

 

3. FDD AND AFTCS DESIGN 

 

The presented FDD scheme belongs to the 

NLGA framework, that allows to de couple 

disturbances by means of a nonlinear coordinate 

transformation. Such a transformation is then the 

starting point to design a set of adaptive filters that 

are able to both detect additive fault acting on a 

single actuator and estimate the magnitude of the 

fault. It is worth observing that in this paper, we can 

consider the effect of friction as a fault affecting the 

actuator, so that thanks to the NLGA approach the 

friction estimate is de coupled from disturbance d. 

The proposed approach can be applied to 

nonlinear systems in the form: 
.

= ( ) + ( ) + ( ) + ( )

= ( )

           (3) 

where the state vector Xx (an open subset of Rn), 

clRu  is the control input vector, Rf  is the 

fault, dlRd  the disturbance vector and mlRy  

the output vector, whilst n(x), l(x), the columns of 

g(x), and pd(x) are smooth vector fields and h(x) is a 

smooth map. The model of Eq. 2 can be related to 

the form of Eq. 3 setting: 
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Assuming in addition that the full state vector is 

measurable (i.e. h(x)=I4x), the design of the strategy 

for the diagnosis of the fault f with disturbance de

coupling is organised as follows: 

computation of 
P

* , i.e. the minimal 

conditioned invariant distribution containing P 

(where P is the distribution spanned by the 

columns of pd(x)); 

computation of 
* , i.e. the maximal 

observability codistribution contained in 

)( P

* ; 

if )()( *xl , the fault is detectable and a 

suitable change of coordinate can be 

determined. 

The computation of 
P

*  can be obtained by means 

of the following recursive algorithm: 
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0 =

+1 = + [ , ker{ }]
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where m is the number of inputs, S is the 

involutive closure of S, ],[ g  is the distribution 

spanned by all vector fields ],[ g  in which 

 , and ],[ g  is the Lie Bracket of g and . 

It can be shown that if there exists a 0 k  such 

that Sk+1=Sk, the algorithm of Eq.4 stops and 
P

* =Sk. 

Once 
P

*  is determined, 
*  can be obtained 

with the following algorithm: 

0 = ( ) span{ }

+1 = ( ) [ + span{ }]
=0

 (5) 

where gL  denotes the codistribution spanned by 

all covector fields gL , with  , and gL  

is the derivative of   along g. If there exists an 

integer k*, such that ** 1
 

kk
QQ , then *k

Q  is 

indicated as o.c.a.( )( P

* ), where o.c.a. stands for 

observability codistribution algorithm. 

It can be shown that *k
Q =o.c.a.( )( P

* ) 

represents the maximal observability codistribution 

containd in P , i.e. 
* (see [5]). Therefore, when 

)()( *xl  the disturbance d can be de-coupled 

and the fault f is detectable.  

As mentioned abote, the considered NLGA to 

the fault diagnosis problem, described in [5], is 

based on a coordinate change in the state space and 

in the output space, respectively denoted as )( x  

and ))(( xy , which are local diffeomorphisms 

structured as follows: 
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such that  )d(spandspan 1

* hh , 

 dspan 1

*
 and the rows of H2 are a subset 

of the rows of the identity matrix. By using the new 

local coordinates ),( yx , the system 4 is 

transformed so that it exhibits an observable 

subsystem that is affected by the fault and not 

affected by the disturbance, as described in [5]: 

.

1 = 1( 1, 2) + 1( 1, 2) +
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1
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In the case of the cart-pole system, the following 

result is obtained: 
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Assuming that the full cart-pole state is measurable, 

 dker h , so that it follows PP

*  as 

dhS ker 0 . Thus, the algorithm of Eq.3 

stops with immediately (k=0).  

Proceeding with the algorithm of Eq. 4, it can be 

observed that: 
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and  dspan 4Ih . From the first step of the 

algorithm it follows that )()( *

* PP
 

and that PP

*

*) ( . Therefore, the fault 

(i.e. the friction force) is detectable, since 

)()( *xl . 

Since the dimension of 
*  and of 

 )d(spandspan 1

* hh  is 3, it 

follows that  RR:(y) 34

1  and that 

 RR:y 14

2H  (the component )( 3 x  is not 

present in this case). Thus, as h(x)=I4x the surjection 

))(( xy  can be defined as follows: 

( ( )) = 1( )

2
=

2 +
4cos 3

+
1

3
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where H2 = [0 0 0 1]. Moreover, 

)()( x 111 xx  is the state variable of the 

observable subsystems that is decoupled from the 

disturbance. 

Given this result, the NLGA-AF can be designed 

introducing the following additional constraint [6]: 

there exists a proper scalar component 1sx  of the 
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state vector 1x  such that the corresponding scalar 

component of the output vector 1s1s x y  and the 

following relation holds: 
.

1
( ) = 1( ) + 2( )      (10) 

 
which means that the effect of the fault signal can be 

properly isolated. The functions M1 and M2 are 

generally computed from both inputs and outputs 

measurements of the system under diagnosis. The 

fault estimation is then obtained thanks to the 

following adaptive filter based on the least-squares 

algorithm with forgetting factor described in [7]: 
.

=
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with the following equations describing the output 

estimation and the corresponding normalized 

estimation error: 

1
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2
(
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Finally, the signals 1s21 y,M,M  are obtained by 

means of low-pass filtering of the signals 

1s21 y,M,M . The design parameters that must be 

properly tuned for the desired application are: 

-pass filters 

required by the computation of 1s21 y,M,M  

ting factor of the adaptation 

algorithm 
2

1

2 M1N  is the normalisation factor of 

the least-squares algorithm. 

 

In order to de-couple the effect of the disturbance d 

from the fault (i.e. friction) estimator, it is necessary 

to select from the observable subsystem the 

following state: 

1 = 11 = 2 + 4cos 3
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whose differentiation allows to compute the full 

expression of 1M  and 2M , namely: 
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4. SIMULATION RESULTS 

 

To compute with Matlab/Simulink the 

simulations results described in this section, the 

AFTCS design has been completed by means of an 

optimal state feedback control law, on the basis of 

the linear approximation of a frictionless version of 

Eq. 2, in a neighborhood of x0 = [x1d 0 0 0]T , in 

which x1d can be any value. In fact, the linear 

approximation is independent from x1, so that the 

input vector of the optimal controller can be 

calculated as xe =[(x1 - x1d) x2 x3 x4] and the cart pole 

system will be stabilised in the upright position at 

any linear position reference. The full control loop is 

therefore the one shown in Fig. 2. 

 

 
Fig. 2: Control loop with proposed AFTCS 

 

The following values of the system parameters 

have been assumed: M = 1 kg; m = 0.1 kg; L = 0.3 

m; g = 9.81 m/s2. The optimal controller has been 

designed using the LQR approach in order to 

minimize the standard quadratic cost function of 

state and input, with Q = 10 I4 and R = 1. 

The simulation of the mechanical system has 

been completed by a nonlinear model of friction 

affecting the linear motion of the cart, including 

viscous friction and Stribeck friction, with Coulomb 

and static part, using the following mathematical 

description: 

= [ +( )

2

]sign( ) +        (16) 

in which Fx =0.6 N/m/s is the viscous coefficient, 

Fc=0.25 N is the Coulomb coefficient, Fs=0.4 N is 

the static part coefficient and vs = 0.02 m/s is the 

Stribeck velocity. This friction model is commonly 

accepted as compatible with experimental 

observations (see [1] and [2]). However, many 

industrial motion control systems adopts simpler 

models for direct compensation of the friction force. 

In particular, the most used approximation of the 

model in Eq. 16, as implemented in industrial 

controllers, disregard the Stribeck effect and include 
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only viscous and Coulomb friction, obtaining the 

following model:  
= sign( ) +           (17) 

 The plot in Fig. 3 shows the different shapes of the 

two nonlinear friction models of Eq. 16 and Eq. 17.  
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Fig. 3: Friction model with Stribeck effect and 

model used by standard compensation algorithms of 

industrial controllers 

 

As can be seen, the simplified model matches the 

more detailed one if the velocity is sufficiently large, 

while it deviates significantly at low velocities. 

Moreover, the friction compensation based on a 

direct model of the friction effect requires 

necessarily a long and accurate tuning procedure, 

based on experimental data. The design of 

experiments themselves is also quite critical for an 

effective identification of friction parameters, as 

described in [1] and [2]. 

With approach based on the proposed AFTCS, 

instead, the friction force is adaptively estimated 

online. In the particular case of the cart-pole system, 

only mechanical parameters that can be quite easily 

measured (i.e. the masses m and M and the pole 

length L) are required. 

The effectiveness of the methodology has been 

evaluated as follows. The NLGA-AF used as a 

friction estimator has been designed assuming the 

nominal model of the cart-pole, but the simulated 

mechanical system included a mismatch of 10% in 

the values of M and m, a random disturbance torque 

d (which is nevertheless de coupled by design) and 

measurement noise on the state feedback signals. As 

can be seen from Fig. 4, the proposed NLGA-based 

estimator provides an accurate and robust measure 

of the actual friction force, even if the mathematical 

model of friction effects is not explicitly included in 

the design of the estimator. Such effective 

performance is achieved by means of a proper 

tuning of the adaptation mechanism of the filter, in 

 = 8:8 have been fixed for the 

simulated case.  

The same Fig. 4 shows also the friction force 

estimated by the model of Eq. 17, assuming instead 

that a perfect tuning of the parameters Fx and Fc can 

be achieved. As can be seen, since the simulated 

experiment is performed at relatively low velocities 

(which is a common operating mode for the 

considered mechanical system, since higher 

velocities would make more challenging the 

stabilization of the inverted pendulum), the 

estimation is not capable of tracking accurately the 

real friction force. Moreover, since the velocity 

measurement is assumed to be noisy, a low-pass 

filte

AFTCS) is applied before the calculation of the 

friction model. Otherwise, at low velocities the noise 

could even reverse inconsistently the sign of the 

measurement and, therefore, change the sign of the 

estimated force, which would have a great impact on 

the performance of the control system if such an 

estimate is used for compensation. 
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Fig. 4: Friction force estimation obtained with the 

proposed AFTCS (blue) and  with the model used 

by standard compensation algorithms of industrial 

controllers (red) 

 

Thanks to its reconstruction, friction can in fact 

be compensated by simply adding its estimated 

value to the output of the optimal controller. As a 

result, the tracking of a time-varying linear cart 

position reference is dramatically improved, as 

shown in Fig. 5. The figure shows that in the first 

half of the plot the optimal controller by itself is not 

robust with respect to the nonlinear friction 

disturbing action, while in the second part of the 

simulation, friction compensation on the basis of 

either the NLGA AF estimation or the simplified 

model of Eq. 17 is introduced and tracking error is 

reduced.  

The performance of the two kind of 

compensators is not significantly different in this 

case, though a magnified plot shown in Fig. 6 

reveals a small advantage of the AFTCS. However, 

it should be noted that the latter is adaptive by 

design, so that components aging and absence of 

lubrication or maintenance would never affect its 

performance in a practical application, as is instead 
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commonly the case when a model-based friction 

compensator is used. 
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Fig. 5: Tracking of a sawtooth reference for the linear position of the cart, without (right) and with (left) friction 

compensation. In the latter case, friction is compensated using either the NLGA-AF system (blue) or the 

simplified direct model (red) 
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Fig. 6: Detail of the tracking plot for the linear 

position of the cart, with friction compensated by the 

NLGA-AF (blue) or the simple  model (red) 

 

5. CONCLUSION 

 

This paper described the development of an 

active fault tolerant control scheme for the purpose 

of friction compensation in mechanical systems, 

which integrates a robust fault diagnosis method 

providing accurate estimation of friction effects. The 

methodology relies on disturbance de coupled 

adaptive filters designed via the nonlinear geometric 

approach. The fault tolerant strategy has been 

applied to a classical control design benchmark, 

namely the inverted pendulum on a cart, which was 

simulated in presence of nonlinear friction, 

disturbing torque acting on the pole pivot, 

measurement noise and modelling errors. 

It is worth observing that the suggested active 

fault tolerant control was already developed in 

works by the same authors, but applied to aerospace 

examples. Thus, the contribution of this paper 

consists of the application of the active fault tolerant 

control scheme to the well known benchmark, in 

order to highlight the computational and 

mathematical aspects of the nonlinear disturbance 

de coupling design, and hence it can be considered 

also as a tutorial for researchers working in 

mechanical systems monitoring and fault diagnosis, 

as well as fault tolerant control and friction 

compensation. 

The proposed fault tolerant scheme allows to 

maintain the existing controller, since a further loop 

is added to the original scheme, thus providing the 

feedback of the adaptive friction estimate provided 

by the nonlinear geometric approach diagnosis 

module. The final performances of the developed 

fault tolerant control strategy are mainly due to the 

fact that the estimate is unbiased, thanks to 

disturbance de-coupling method. Moreover, when 

compared with other commonly used friction 

compensation methods, based on explicit models of 

the friction force, the proposed methodology has the 

advantage of being insensitive to parameter 

variation in the friction effect. The application of the 

proposed AFTCS is currently under evaluation on 

real case studies represented by didactical laboratory 

systems and industrial robotic manipulators. 
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