Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let R be a unital associative ring. Our motivation is to prove that left derivations in column finite matrix rings over R are equal to zero and demonstrate that a left derivation d:T→T in the infinite upper triangular matrix ring T is determined by left derivations dj in R(j=1,2,…) satisfying […] for any […], where [formula]. The similar results about Jordan left derivations are also obtained when R is 2-torsion free.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230150
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- College of Sciences, Northeast Electric Power University, Jilin 132012, China
autor
- College of Sciences, Northeast Electric Power University, Jilin 132012, China
autor
- College of Sciences, Northeast Electric Power University, Jilin 132012, China
autor
- School of Mathematics and Statistics, Linyi University, Linyi 276005, China
Bibliografia
- [1] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435–460, DOI: https://doi.org/10.2307/1971432.
- [2] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7–16, DOI: https://doi.org/10.2307/2048234.
- [3] M. H. Ahmadi Gandomani and M. J. Mehdipour, Jordan, Jordan right and Jordan left derivations on convolution algebras, Bull. Iranian Math. Soc. 45 (2019), no. 1, 189–204, DOI: https://doi.org/10.1007/s41980-018-0125-7.
- [4] Y. Ahmed and W. A. Dudek, Left Jordan derivations on certain semirings, Hacet. J. Math. Stat. 50 (2021), no. 3, 624–633, DOI: https://doi.org/10.15672/hujms.491343.
- [5] G. An, Y. Ding, and J. Li, Characterizations of Jordan left derivations on some algebras, Banach J. Math. Anal. 10 (2016), no. 3, 466–481, DOI: https://doi.org/10.1215/17358787-3599675.
- [6] B. Fadaee and H. Ghahramani, Jordan left derivations at the idempotent elements on reflexive algebras, Publ. Math. Debrecen 92 (2018), no. 3-4, 261–275, DOI: https://doi.org/10.5486/PMD.2018.7785.
- [7] N. M. Ghosseiri, On Jordan left derivations and generalized Jordan left derivations of matrix rings, Bull. Iranian Math. Soc. 38 (2012), no. 3, 689–698, DOI: https://doi.org/10.4153/CMB-2011-089-1.
- [8] M. Ashraf, On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math. 25 (2001), no. 3, 379–382, DOI: https://doi.org/10.1007/s10012-001-0379-4.
- [9] J. Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ. 39 (1997), 1–6.
- [10] M. Aşci and C. şahin, The commutativity in prime gamma rings with left derivation, Int. Math. Forum 2 (2007), no. 1–4, 103–108, DOI: http://dx.doi.org/10.12988/imf.2007.07008.
- [11] K. K. Dey, A. C. Paul, and B. Davvaz, On centralizing automorphisms and Jordan left derivations on σ -prime gamma rings, Hacet. J. Math. Stat. 44 (2015), no. 1, 51–57, DOI: https://doi.org/10.15672/HJMS.2015449098.
- [12] A. Ebadian and M. Gordji Eshaghi, Left Jordan derivations on Banach algebras, Iran. J. Math. Sci. Inform. 6 (2011), no. 1, 1–6, DOI: http://dx.doi.org/10.7508/ijmsi.2011.01.001.
- [13] Y. S. Jung and K. H. Park, Left Jordan derivations on Banach algebras and related mappings, Bull. Korean Math. Soc. 47 (2010), no. 1, 151–157, DOI: https://doi.org/10.4134/BKMS.2010.47.1.151.
- [14] Y. S. Jung, On the generalized Hyers-Ulam stability of module left derivations, J. Math. Anal. Appl. 339 (2008), no. 1, 108–114, DOI: https://doi.org/10.1016/j.jmaa.2007.07.003.
- [15] W. G. Park and I. S. Chang, Stability for Jordan left derivations mapping into the radical of Banach algebras, Honam Math. J. 34 (2012), no. 1, 55–62, DOI: https://doi.org/10.5831/HMJ.2012.34.1.55.
- [16] K. H. Park and Y. S. Jung, Jordan derivations and Jordan left derivations of Banach algebras, Commun. Korean Math. Soc. 17 (2002), no. 2, 245–252, DOI: https://doi.org/10.4134/CKMS.2002.17.2.245.
- [17] J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequationes Math. 75 (2008), no. 3, 260–266, DOI: https://doi.org/10.1007/s00010-007-2872-z.
- [18] K. Glazek, A Guide to Literature on Semirings and their Applications in Mathematics and Information Sciences with Complete Bibliography, Kluwer Academic Publishers, Dodrecht, 2002.
- [19] J. S. Golan, Semirings and their Applications, Kluwer Academic Publishers, Dodrecht, 1999.
- [20] J. Li and J. Zhou, Jordan left derivations and some left derivable maps, Oper. Matrices 4 (2010), no. 1, 127–138, DOI: https://dx.doi.org/10.7153/oam-04-06.
- [21] S. Ali, On generalized left derivations in rings and Banach algebras, Aequationes Math. 81 (2011), no. 3, 209–226, DOI: https://doi.org/10.1007/s00010-011-0070-5.
- [22] M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2008), no. 2, 253–261, DOI: https://doi.org/10.4134/BKMS.2008.45.2.253.
- [23] H. Cao, J. Lv, and J. M. Rassias, Superstability for generalized module left derivations and generalized module derivations on a Banach module, II, J. Inequal. Pure Appl. Math. 10 (2009), no. 3, Paper No. 85, 8 p.
- [24] A. Ghosh and O. Prakash, Jordan left {g, h}-derivation over Some Algebras, Indian J. Pure Appl. Math. 51 (2020), no. 4, 1433–1450, DOI: https://doi.org/10.1007/s13226-020-0475-8.
- [25] A. Ghosh and O. Prakash, Characterization of Jordan {g, h}-derivations over Matrix Algebras, J. Algebr. Syst. 11 (2023), no. 1, 77–95, DOI: https://doi.org/10.22044/JAS.2022.11250.1562.
- [26] D. Han and F. Wei, Generalized Jordan left derivations on semiprime algebras, Monatsh. Math. 161 (2010), no. 1, 77–83, DOI: https://doi.org/10.1007/s00605-009-0116-0.
- [27] S. Y. Kang and I. S. Chang, Approximation of generalized left derivations, Abstr. Appl. Anal. (2008), Art. ID 915292, 8pp, DOI: https://doi.org/10.1155/2008/915292.
- [28] L. Oukhtite, Generalized Jordan left derivations in rings with involution, Demonstr. Math. 45 (2012), no. 4, 807–812, DOI: https://doi.org/10.1515/dema-2013-0420.
- [29] N. Rehman and A. Z. Ansari, On Lie ideals and generalized Jordan left derivations of prime rings, Ukrainian Math. J. 65 (2014), no. 8, 1247–1256, DOI: https://doi.org/10.1007/s11253-014-0855-5.
- [30] J. Zhu and C. Xiong, Characterization of generalized Jordan ∗-left derivations on real nest algebras, Linear Algebra Appl. 404 (2005), 325–344, DOI: https://doi.org/10.1016/j.laa.2005.02.034.
- [31] S. Cui and F. Niu, Derivation on infinite matrix rings, (Chinese), J. Math. Res. Exposition 24 (2004), no. 2, 353–358.
- [32] X. Xu and H. Zhang, Jordan left derivations in full and upper triangular matrix rings, Electron. J. Linear Algebra 20 (2010), 753–759, DOI: https://doi.org/10.13001/1081-3810.1407.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa6bce94-160f-4528-8a3d-d0e785e39bc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.