PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photobiological safety of lamps and lamp systems in agriculture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article aims to study the photobiological safety of ultraviolet radiation of UV lamps in agriculture. Design/methodology/approach: The research and analysis of the lighting characteristics of samples of LUF 80 and LE 30 lamps, which are the most widely used in the agrarian complex. Findings: Experimental studies have shown that the photobiological safety of LUF 80 lamps belongs to the low-risk group RG1, while LE 30 lamps show high risk and are thus assigned to group RG3. Research limitations/implications: It is advisable to continue studying the characteristics of lamps and lamp systems for various fields of agriculture on the market in Ukraine to assess their compliance with safety requirements. Practical implications: The application of the proposed approach allows increasing the level of labor safety in commercial greenhouses or any other industry by choosing the suitable lamps for agriculture that at present are not regulated by additional safety measures. Originality/value: The originality of the article is showing the results of the experimental data of the studies of light-technical characteristics of ultraviolet lamps for agriculture.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Commodity Studies, Biotechnology, Expertise and Customs, Poltava University of Economics and Trade, 3 Koval str., 36014, Poltava, Ukraine
autor
  • Department Biotechnology and Chemistry, Poltava State Agrarian University, 1/3 Skovorody str., 36000, Poltava, Ukraine
autor
  • Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
Bibliografia
  • [1] Z.A. Duriagina, T.L. Tepla, V.V. Kulyk, R.Ya, Kosarevych, V.V. Vira, O.A. Semeniuk, Study of structure and morphology of surface layers formed on TRIP steel by the femtosecond laser treatment, Journal of Achievements in Materials and Manufacturing Engineering 93/1-2 (2019) 5-19. DOI: https://doi.org/10.5604/01.3001.0013.4137
  • [2] M. Szindler. M.M Szindler, P. Boryło, ZnO nanocrystalline powder prepared by sol-gel method for photoanode of dye sensitized solar cells application, Journal of Achievements in Materials and Manufacturing Engineering 88/1 (2018) 12-17. DOI: https://doi.org/10.5604/01.3001.0012.5866
  • [3] V. Shatokha, Chasing shadows: technology and socioeconomic barriers versus climate targets for iron and steel industry, Archives of Materials Science and Engineering 92/1 (2018) 33-40. DOI: https://doi.org/10.5604/01.3001.0012.5510
  • [4] S. Ragimov, V. Sobyna, S. Vambol, V. Vambol, A. Feshchenko, A. Zakora, E. Strejekurov, V. Shalomov, Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 27-33. DOI: https://doi.org/10.5604/01.3001.0012.9654
  • [5] O. Kruzhilko, V. Maystrenko, Management decision-making algorithm development for planning activities that reduce the production risk level, Journal of Achievements in Materials and Manufacturing Engineering 93/1-2 (2019) 41-49. DOI: https://doi.org/10.5604/01.3001.0013.4141
  • [6] A.P. Bochkovskyi, Elaboration of occupational risks evaluation models considering the dynamics of impact of harmful factors, Journal of Achievements in Materials and Manufacturing Engineering 102/2 (2020) 76-85. DOI: https://doi.org/10.5604/01.3001.0014.6777
  • [7] A. Semenov, G. Kozhushko, T. Sakhno, Influence of pre-sowing UV-radiation on the energy of germination capacity and germination ability of rapeseed Technology Audit and Production Reserves 5/1(43) (2018) 61-65. DOI: https://doi.org/10.15587/2312- 8372.2018.143417
  • [8] A. Semenov, G. Kozhushko, T. Sakhno, Influence of UV radiation іn pre-sowing treatment of seeds of crops, Technology Audit and Production Reserves 1/3(45) (2019) 30-32. DOI: https://doi.org/10.15587/2312-8372.2019.159954
  • [9] L.N. Yin, S.W. Wang, Modulated increased UV-B radiation affects crop growth and grain yield and of maize in the field, Photosynthetica 50 (2012) 595-601. DOI: https://doi.org/10.1007/s11099-012-0068-9
  • [10] M.C. Vázquez-Hernández, I. Parola-Contreras, L.M. Montoya-Gómez, I. Torres-Pacheco, D. Schwar, R.G. Guevara-Gonzáleza, Eustressors: Chemical and physical stress factors used to enhance vegetables production, Scientia Horticulturae 250 (2019) 223-229. DOI: https://doi.org/10.1016/j.scienta.2019.02.053
  • [11] S. Neugart, H.P. Kläring, M. Zietz, M. Schreiner, S. Rohn, L.W. Kroh, A. Krumbein, The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (Brassica oleracea var. sabellica), Food Chemistry 133/4 (2012) 1456-1465. DOI: https://doi.org/10.1016/j.foodchem.2012.02.034
  • [12] А. Tiecher, L.A. De Paula, F.C. Chaves, C.V. Rombaldi, UV-C effect on ethylene, polyamines and the regulation of tomato fruit ripening, Postharvest Biology and Technology 86 (2013) 230-239. DOI: https://doi.org/10.1016/j.postharvbio.2013.07.016
  • [13] F. Artés-Hernández, P.A. Robles, P.A. Gómez, A. Tomás-Callejas, F. Artés, Low UV-C illumination for keeping overall quality of fresh-cut watermelon, Postharvest Biology and Technology 55/2 (2010) 114-120. DOI: https://doi.org/10.1016/j.postharvbio.2009.09.002
  • [14] M. Erkan, S.Y. Wang, C.Y. Wang, Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit, Postharvest Biology and Technology 48/2 (2008) 163-171. DOI: https://doi.org/10.1016/j.postharvbio.2007.09.028
  • [15] M.P. Bridgen, Using ultraviolet-C (UV-C) irradiation on greenhouse ornamental plants for growth regulation, Acta Horticulturae 1134 (2016) 49-56. DOI: https://doi.org/10.17660/ActaHortic.2016.1134.7
  • [16] А. Acemi, Y.A. Duman, Y.Y. Karakuş, F. Özen, A preliminary investigation on developmental and biochemical responses of Amsonia orientalis to ultraviolet - C irradiation, Advances in Horticultural Science 32/4 (2018) 563-568. DOI: https://doi.org/10.13128/ahs-22468
  • [17] C. Vergneau-Grosset, F. Péron, Effect of ultraviolet radiation on vertebrate animals: update from ethological and medical perspectives, Photochemical and Photobiological Sciences 19 (2020) 752-762. DOI: https://doi.org/10.1039/c9pp00488b
  • [18] A. Semenov, G. Kozhushko, Device for germicidal air disinfection by ultraviolet radiation, Eastern-European Journal of Enterprise Technologies 3/10(69) (2014) 13-17. DOI: https://doi.org/10.15587/1729- 4061.2014.24822
  • [19] A.V. Parisi, J.C.F. Wong, The erythemal ultraviolet exposure for humans in greenhouses, Physics in Medicine and Biology 42/12 (1997) 2331-2339. DOI: https://doi.org/10.1088/0031-9155/42/12/002
  • [20] International Commission on Non-Ionizing Radiation Protection (ICNIRP), Protection of Workers against Ultraviolet Radiation, Health Physics 99 (2010) 66-87.
  • [21] R.L. McKenzie, J.B. Liley, L.O. Björn, UV Radiation: Balancing Risks and Benefits, Photochemistry and Photobiology 85/1 (2009) 88-98. DOI: https://doi.org/10.1111/j.1751-1097.2008.00400.x
  • [22] А. Sokolova, A. Lee, S.D. Smith, The Safety and Efficacy of Narrow Band Ultraviolet B Treatment in Dermatology: A Review, American Journal of Clinical Dermatology 16 (2015) 501-531. DOI: https://doi.org/10.1007/s40257-015-0151-7
  • [23] А. Brozyna, B. Zbytek, J. Granese, A.J. Carlson, J. Ross, A. Slominski, Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma, Expert Review of Dermatology 2/4 (2007) 451-469. DOI: https://doi.org/10.1586/17469872.2.4.451
  • [24] J. Reimann, J.E. McWhirter, A. Papadopoulos, C. Dewey, A systematic review of compliance with indoor tanning legislation, BMC Public Health 18 (2018) 1096. DOI: https://doi.org/10.1186/s12889-018-5994-4
  • [25] F. Zedek, K. Plačková, P. Veselý, J. Šmerda, P. Šmarda, L. Horová, P. Bureš, Endopolyploidy is a common response to UV-B stress in natural plant populations, but its magnitude may be affected by chromosome type, Annals of Botany 126/5 (2020) 883- 889. DOI: https://doi.org/10.1093/aob/mcaa109
  • [26] А.О. Semenov, Т.V. Sakhno, G.M. Kozhushko, Analysis of the role of UV radiation on development and productivity of various crops, Lighting Engineering & Power Engineering 2 (2017) 3-16.
  • [27] J. Cadet, S. Mouret, J.L. Ravanat, T. Douki, Photoinduced damage to cellular DNA: direct and photosensitized reactions, Photochemistry and Photobiology 88/5 (2012) 1048-1065. DOI: https://doi.org/10.1111/j.1751-1097.2012.01200.x
  • [28] Н. Chen, R. Li, S. Li, J. Andréasson, J.H. Choi, Conformational Effects of UV Light on DNA Origami, Journal of the American Chemical Society 139/4 (2017) 1380-1383. DOI: https://doi.org/10.1021/jacs.6b10821
  • [29] R. Greinert, E. de Vries, F. Erdmann, C. Espina, A. Auvinen, A. Kesminiene, J. Schüz, European Code against Cancer 4th Edition: Ultraviolet radiation and cancer, Cancer Epidemiology 39 (2015) S75-S83. DOI: https://doi.org/10.1016/j.canep.2014.12.014
  • [30] P. Autier, J.F. Doré, Ultraviolet radiation and cutaneous melanoma: a historical perspective, Melanoma Research 30/2 (2020) 113-125. DOI: https://doi.org/10.1097/CMR.0000000000000609
  • [31] T. Shibuya, T. Akiba, T. Iwanaga, Research note: Measurement of blue light hazard risk level using a hyperspectral camera, Lighting Res Technol 52/5 (2020) 692-697. DOI: https://doi.org/10.1177/1477153519893419
  • [32] C. Backes, A. Religi, L. Moccozet, F. Behar-Cohen, L. Vuilleumier, J.L. Bulliard, D. Vernez, Sun exposure to the eyes: predicted UV protection effectiveness of various sunglasses, Journal of Exposure Science and Environmental Epidemiology 29 (2019) 753-764. DOI: https://doi.org/10.1038/s41370-018-0087-0
  • [33] EN 60335–2–27: 2013, Household and similar electrical appliances - Safety - Part 2-27: Particular requirements for appliances for skin exposure to ultraviolet and infrared radiation.
  • [34] IEC 61228: 2008, Fluorescent ultraviolet lamps used for tanning, Measurement and specification method.
  • [35] R. Ghiasvand, C.S. Rueegg, E. Weiderpass, A.C. Green, E. Lund, M.B. Veierød, Indoor Tanning and Melanoma Risk: Long-Term Evidence From a Prospective Population-Based Cohort Study, American Journal of Epidemiology 185/3 (2017) 147-156. DOI: https://doi.org/10.1093/aje/kww148
  • [36] M.I. Longo, J.L. Bulliard, O. Correia, H. Maier, S.M. Magnússon, P. Konno, N. Goad, A.F. Duarte, J. Oláh, L.T.N. Nilsen, K. Peris, R. Karls, A.M. Forsea, V. Del Marmol, Sunbed use legislation in Europe: assessment of current status, Journal of The American Academy of Dermatology 33/S2 (2019) 89-96. DOI: https://doi.org/10.1111/jdv.15317
  • [37] A.R. Webb, H. Slaper, P. Koepke, A.W. Schmalwieser, Know Your Standard: Clarifying the CIE Erythema Action Spectrum, Photochemistry and Photobiology 87/2 (2011) 483-486. DOI: https://doi.org/10.1111/j.1751-1097.2010.00871.x
  • [38] D.A. Lazovich, R.I. Vogel, M.A. Weinstock, H.H. Nelson, R.L. Ahmed, M. Berwick, Association between indoor tanning and melanoma in younger men and women, JAMA Dermatol 152/3 (2016) 268-275. DOI: https://doi.org/10.1001/jamadermatol.2015.2938
  • [39] EN 62471:2008, Photobiological safety of lamps and lamp systems (IEC 62471:2006, CIE S 009: 2002).
  • [40] The SCENIHR adopted this opinion, Health Effects of Artificial Light, Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), The SCENIHR 17th plenary meeting on 19 March 2012.
  • [41] P.J. Rochette, J.P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E.A. Drobetsky, E. Sage, UVA–induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Research 31/11 (2003) 2786-2794. DOI: https://doi.org/10.1093/nar/gkg402
  • [42] R.P. Sinha, D.-P. Hader, UV–induced damage and repair: a review, Photochemical & Photobiological Sciences 1/4 (2002) 225-236. DOI: https://doi.org/10.1039/B201230H
  • [43] F. Behar-Cohen, G. Baillet, T. Ayguavives, O.P. Garcia, J. Krutmann, P. Peña-García, C. Reme, J.S. Wolffsohn, Ultraviolet damage to the eye revisited: eye-sun protection factor (E–SPF®), a new ultraviolet protection label for eyewear, Clinical Ophthalmology 8/1 (2014) 87-104. DOI: https://doi.org/10.2147/OPTH.S46189
  • [44] J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, T. Scott, UV Radiation and the Skin, International Journal of Molecular Sciences 14/6 (2013) 12222-12248. DOI: https://doi.org/10.3390/ijms140612222
  • [45] V.E. Reeve, R.D. Ley, Animal models of ultraviolet radiation-induced skin cancer, In: D. Hill, J.M. Elwood, D.R. English (eds.), Prevention of Skin Cancer, Cancer Prevention - Cancer Causes 3, Springer, Dordrecht, 2014.
  • [46] A. Semenov, I. Korotkova, T. Sakhno, M. Marenych, V. Нanhur, V. Liashenko, V. Kaminsky, Effect of UV-C radiation on basic indices of growth process of winter wheat (Triticum aestivum L.) seeds in pre-sowing treatment, Acta Agriculturae Slovenica 116/1 (2020) 49-58. DOI: http://dx.doi.org/10.14720/aas.2020.116.1.1563
  • [47] A. Semenov, T. Sakhno, K. Semenova, Influence of UV Radiation on Physical and Biological Properties of Rapeseed in Pre-Sowing Treatment, International Journal of Innovative Technology and Exploring Engineering 10/4 (2021) 217-223. DOI: https://doi.org/10.35940/ijitee.D8587.0210421
  • [48] H.N. Ananthaswany, Ultraviolet light as a carcinogen, Chemical Carcinogens and Anticarcinogens 12 (1997) 255-279.
  • [49] N-A. O’Sullivan, C.P. Tait, Tanning bed and nail lamp use and the risk of cutaneous malignancy: A review of the literature, Australasian Journal of Dermatology 55/2 (2014) 99-106. DOI: https://doi.org/10.1111/ajd.12145
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa62f33b-ede1-4d95-b215-ffb08a242246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.