PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deposition time and annealing effects on morphological and optical properties of ZnS thin films prepared by chemical bath deposition

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanocrystalline zinc sulfide thin films were prepared on glass substrates by chemical bath deposition method using aqueous solutions of zinc chloride, thiourea ammonium hydroxide along with non-toxic complexing agent trisodium citrate in alkaline medium at 80 °C. The effect of deposition time and annealing on the properties of ZnS thin films was investigated by X-ray diffraction, scanning electron microscopy, optical transmittance spectroscopy and four-point probe method. The X-ray diffraction analysis showed that the samples exhibited cubic sphalerite structure with preferential orientation along 〈2 0 0〉 direction. Scanning electron microscopy micrographs revealed uniform surface coverage, UV-Vis (300 nm to 800 nm) spectrophotometric measurements showed transparency of the films (transmittance ranging from 69 % to 81 %), with a direct allowed energy band gap in the range of 3.87 eV to 4.03 eV. After thermal annealing at 500 °C for 120 min, the transmittance increased up to 87 %. Moreover, the electrical conductivity of the deposited films increased with increasing of the deposition time from 0.35 × 10−4 Ω·cm−1 to 2.7 × 10−4 Ω·cm−1.
Słowa kluczowe
Wydawca
Rocznik
Strony
404--416
Opis fizyczny
Bibliogr. 42 poz., tab., rys.
Twórcy
autor
  • Renewable Energies Laboratory (LER)/Jijel University, Algeria
autor
  • Renewable Energies Laboratory (LER)/Jijel University, Algeria
autor
  • Thin Films and Interfaces Laboratory, Constantine University, Algeria
autor
  • ICTEAM/Université Catholique de Louvain (UCL), Louvain-La-Neuve, Belgium
Bibliografia
  • [1] HASSANIEN A.S., AKL A.A., Superlattice. Microstruct, 89 (2016), 153.
  • [2] HUANG Y.-H., JIE W.-Q., ZHOU Y., ZHA G.-Q., J. Alloy. Compd, 549 (2013), 184.
  • [3] DÍAZ REYE S.J., CASTILLOOJEDA R.S., SÁNCHEZES PÍNDOL A. R., curr. Appl, 15(2015), 103.
  • [4] CHA J.H., KWON S.M., BAE J.A., YANG S.H., JEON C.W., J. Alloy. Compd, 708 (2017),562 .
  • [5] LEI Y., CHEN F.F., LI R., XU J., Appl. Surf. Sci, 308 (2014), 206.
  • [6] PIQUETTE E.C., BANDIC Z.Z., MCCALDIN J.O., MCGILL T.C., J. Vac. Sci. Technol. B, (1997).
  • [7] KURBATOV D., KSHNYAKINA S., OPANASYUK A., MELNIK V., NESPRAVA V., Rom. J. Phys., 55 (2010), 213.
  • [8] BOSCO J.P., DEMERS S.B., KIMBALL G.M., LEWIS N.S., J. Appl. Phys, 9 (2012).
  • [9] WU X., LAI F., LIN L., LVJ., ZHUANG B., YAN Q., HUANG Z., Appl. Surf. Sci., 254 (2008), 6455.
  • [10] XU G., MIAO C., LIU G., YE C., J. Mater. Chem.,11 (2012), 4890.
  • [11] LIU T.Z., KE H., ZHANG H., Mater. Sci. Semicond. Proc., 26 ( 2014), 301.
  • [12] KHALIFA Z.S., MAHMOUD S.A., Physica E, 60 (2017), 91.
  • [13] BHALERAO B.A., LOKHANDE D.C., WAGH G.B., Nanotechnol.,6 (2013), 996.
  • [14] KRIISA M., KIIRBER E., KRUNKS M., Thin Solid Films, 87 (2014), 555.
  • [15] HAUBI N.F., MIDHJIL K.A., RASHID H.G., MANSOUR H., Phys. Lett.,24 (2010).
  • [16] SULTANA J., PAUL S., KARMAKAR A., YI R., DALAPATI G.K., CHATTOPADHYAY S., Appl. Surf. Sci., 418 (2017), 380.
  • [17] LIU J., WEI A., ZHAO Y., J. Alloy.Compd., 588 (2014), 228.
  • [18] HARISKOS D., SPIERING S., POWALLA M., Thin Solid Films, 480(2005), 99.
  • [19] WOOK S.S., AGAWANE G.L., MYENG G.G., MOHOLKAR A.V., J. Alloy. Compd., (2012), 25.
  • [20] SHIN S.W., AGAWANE G.L., GANGB M.G., MOHOLKARC A.V., MOON J.H., KIM J.H., LEE J.Y., J. Alloy. Compd., 526 (2012).
  • [21] KASSIMA., NAGALINGAM S., Arabian J. Chem., 249 (2010), 234.
  • [22] DUBROVIN. I.V., BUDENNAYA L.D., MIZETSKAYA I.B., SHARKINA, Inorg. Mater., 19 (1983), 1603.
  • [23] LIANG G., FAN P., CHENC., LUO J., ZHAO J., ZHANG D., Mater. Electron., 26 (2015), 2230.
  • [24] OZKAN M., EKEM N., PAT S., BALBA M.Z., Mater. Sci. Semicond. Proc., 15 (2012), 113.
  • [25] LADAR M., POPOVICI E.J., BALDEA I., GRECU R., J. Alloy. Compd., 434 (2007), 697.
  • [26] NAKADA T., FURUMI K., KUNIOKA A., IEEE Trans. Elec. Dev., 46 (1999) 2093.
  • [27] KANG S.R., SHIN S.W., CHOI D.S., MOHOLKAR A.V., MOON J.H., KIM J.H., Curr. Appl. Phys, 10 (2010), 437.
  • [28] SINGH J., John. Wiley. Sons, (2006).
  • [29] NIEN Y.T., CHEN I.G., J. Alloy. Compd., 471 (2009), 553.
  • [30] OBAID A.S., MAHDI M.A., AHMED DIHE A., HASSAN Z., Appl. Sci. Manag., 2012 (2012), 26.
  • [31] LOKHANDE C.D., PATIL P.S., TRIBUTSCH H., ENNAOUI A., Sol. Eng. Mat. Sol. C., 55 (1998), 379.
  • [32] KE H., DUO S., LIU T., SUN Q., RUAN C., FEI X., TANJ, ZHAN S., Mater. Sci. Semicond. Proc., 18 (2014), 28.
  • [33] FATHY N., KOBAYASHI R., ICHIMURA M., Mater. Sci. Eng. B, 107 (2004), 271.
  • [34] OFFIAH S.U., UGWOKE P.E., EKWEALOR A.B., EZUGWU S.C., OSUJI R.U., EZEMA F.I., Digest. J. Nanomater. Biostruct., 7 (2012), 165.
  • [35] BREWE RS. H., FRANZEN S., J. Alloy. Compd., 338 (2002), 73.
  • [36] ARENA O.L., NAIR M.T.S., NAIR P.K., Semicond. Sci. Technol., 12 (1997), 1323.
  • [37] YANG H., ZHAO J., SONG L., Mater. Lett, 15 (2003), 2287.
  • [38] KULKANI D., Bull. Mater. Sci., 28 (2005), 43.
  • [39] DERBALIA A., SAIDIA H., ATTAFA A., BENAMRAAH., BOUHDJERA A., ATTAFBN., EZZAOUIAC H., J. Semicond, 9 (2018), 45.
  • [40] BENDJEDIDI H., ATTAF A., SAIDI H., AIDA M.S., SEMMARI S.,BOUHDJAR A., BENKHETTA Y., J. Semicond., 36 (2015), 12.
  • [41] AKL A.A., MAHMOUD S.A., AL-SHOMAR S.M., HASSANIEN A.S., Mater. Sci. Semicond. Proc., 74 (2018), 183.
  • [42] HASSANIEN A.S., AKL A.A., J. Alloy. Compd,. 648 (2015), 280.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa5aeffa-73d7-49d3-ba05-b3d3d12af363
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.