PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Combination of Wavelet Analysis and Artificial Neural Networks Applied to Forecast of Daily Cosmic Ray Impulses

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial neural network modelling has proven incredibly effective in an impressively wide range of scientific disciplines. The combination of these various methods with wavelet decomposition signal processing has similarly proven to be a powerful development for statistical forecasting of a number of environmental processes. Space weather modelling and prediction has often been applied to forecasting of solar activity and that of the planetary magnetic field. However, prediction of cosmic ray impulses has seen little development in the context of neural network modelling. In the present study, a combination of wavelet neural networks was adapted from previous research in order to predict daily average values of cosmic ray impulses 30 days in advance. Additional comparison of both neural network and linear regression modelling with and without wavelet decomposition was conducted for further demonstration of increased accuracy with wavelet neural networks in a simple input-output fitting model.
Rocznik
Tom
Strony
55--63
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Transnational Anomalies Research, Sudbury, Ontario P3E 3W6, Canada
Bibliografia
  • [1] J. M. Caswell, Journal of Signal and Information Processing 5 (2014) 42-53.
  • [2] L. Erguo, Y. Jinshou, Proceedings of the 4th World Congress on Intelligent Control and Automation, Shang Hai (2002) 2755-2759.
  • [3] K. Levenberg, Quarterly of Applied Mathematics 2 (1944) 164-168.
  • [4] B. Krishna, R. Satyaji Rao, P. C. Nayak, Journal of Water Resource and Protection 3 (2011) 50-59.
  • [5] A. D. Erlykin, A. W. Wolfendale, Journal of Physics G: Nuclear and Particle Physics 23 (1997) 979.
  • [6] K. S. Carslaw, R. G. Harrison, J. Kirby, Science 298 (2002) 1732-1737.
  • [7] K. O’Brien, W. Friedberg, H. H. Sauer, D. F. Smart, Environmental International 22 (1996) 9-44.
  • [8] F. A. Cucinotta, M. Durante, The Lancet Oncology 7 (2006) 431-435.
  • [9] J. H. Adams, R. Silberberg, C. H. Tsao, IEEE Transactions on Nuclear Science 29 (1982) 169-172.
  • [10] S.-H. Cao, J.-B. Chen, W.-B. Weng, J.-C. Cao, Natural Science 1 (2009) 30-36.
  • [11] C. G. Looney, Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists (1997) Oxford University Press, Oxford.
  • [12] K. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, P. S. Meltzer, Nature Medicine 7 (2001) 673-679.
  • [13] R. J. Boynton, M. A. Balikhin, S. A. Billings, O. A. Amariutei, Annales Geophysicae 31 (2001) 1579-1589.
  • [14] L. Adams, Microelectronics Journal 16 (1985) 17-29.
  • [15] D. Binder, E. C. Smith, A. B. Holman, IEEE Transactions on Nuclear Science 22 (1975) 2675-2680.
  • [16] F. Valach, J. Boschnicek, P. Hejda, M. Revallo, Advances in Space Research 53 (2014) 589-598.
  • [17] K. S. Saroka, J. M. Caswell, A. Lapointe, M. A. Persinger, Neuroscience Letters 560 (2014) 126-130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa5a17b4-bbf7-4bc4-a6a3-e5306f364972
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.