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ABSTRACT 

Artificial neural network modelling has proven incredibly effective in an impressively wide 

range of scientific disciplines. The combination of these various methods with wavelet decomposition 

signal processing has similarly proven to be a powerful development for statistical forecasting of a 

number of environmental processes. Space weather modelling and prediction has often been applied 

to forecasting of solar activity and that of the planetary magnetic field. However, prediction of cosmic 

ray impulses has seen little development in the context of neural network modelling. In the present 

study, a combination of wavelet neural networks was adapted from previous research in order to 

predict daily average values of cosmic ray impulses 30 days in advance. Additional comparison of 

both neural network and linear regression modelling with and without wavelet decomposition was 

conducted for further demonstration of increased accuracy with wavelet neural networks in a simple 

input-output fitting model. 
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1.  INTRODUCTION 

 

The use of advanced computational models, particularly artificial neural networks, in 

the long-term forecasting of various environmental factors has recently seen a surge in 

increased application [1]. Artificial neural networks (ANN) are nonlinear methods of 

artificial machine learning based on the nervous system. Rather than relying on correlative 

relationships, ANNs learn much the way a child does by ‘observing’ multiple instances of a 

particular outcome. This method of analysis may therefore provide useful alternative 

approaches to a number of statistical problems [2]. 

Neural networks are particularly useful for highly complex or ‘noisy’ datasets and 

advanced predictions. Input data is entered through the network in a series of artificial 

‘neurons’ which output to a hidden layer of neurons before output convergence (prediction). 

In a typical input-output fitting neural network, backpropagation algorithms are often 

employed and constitute one of the primary foundations for ANN analyses which 
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dynamically update statistical weights in the system; these statistical weights form the 

‘synaptic connections’ between neurons in the network.  

A primary training algorithm used in backpropagation ANN learning is the Levenberg-

Marquardt algorithm, which is a standard curve fitting method often used in generic problem 

solving using a damped least squares process [3]. Given minute variations in statistical results 

upon subsequent re-training of a particular network, large numbers of individual ANNs may 

be trained and tested in order to average the outputs for more accurate performance results. 

While autoregressive functions have previously been applied to neural network analyses for 

prediction of various space weather phenomena [1], exploration of advance statistical 

prediction has recently been examined without the necessity for strictly autoregressive 

network feedback. Furthermore, the combination of both ANN models and wavelet 

decomposition methods has proven effective in other areas of environmental prediction [4].  

In wavelet analysis, a given signal is decomposed into a series of time-frequency 

domain variables such that by summing resultant frequencies will result in a reconstruction of 

the original signal. A mother wavelet is applied to the original data in order to extract further 

information about the original variable of interest within a set of time-frequency 

representations for subsequent processing of a continuous-time signal. This method of 

decomposition allows for additional information and much greater detail of a particular 

process for further analysis. Wavelet decomposition has recently seen much wider use in 

direct association with neural network predictions by ‘increasing’ the available information 

of a single variable for further analysis [4]. Data forecasting specifically for events related to 

galactic cosmic rays (CR) has received surprisingly little attention in the context of neural 

network computations. Cosmic rays are simply high-energy particles which have been 

theorized to originate from a number of extragalactic sources, the most prominent of which 

include supernovae [5]. The composition of CRs consists predominantly of protons, with 

other heavy nuclei. These particles are capable of penetrating the atmosphere of the planet 

and, through ionization processes, are involved in weather conditions on Earth [6]. They also 

produce a large proportion of the ambient background radiation to which all life is exposed. 

Various health risks have been associated with cosmic radiation, particularly at aircraft 

altitudes [7] and, of course, outside of the Earth’s atmosphere [8]. However, various effects 

of CR events have also been revealed within microelectronic systems [9]. For the present 

study, combination of wavelet decomposition and ANN input-output fitting procedures were 

adapted from Krishna et al. [4] and employed in order to predict the average daily CR 

impulses per minute 30 days (~1 month) in advance. Additional neural networks and linear 

regression models were produced both with and without wavelet decomposition for 

comparison of overall performance. 

 

 

2.  METHODS 

 

Daily averages of cosmic ray activity (average CR impulses per minute) were obtained 

(N = 1431, µ = 9347.5, σ = 266.86) from the Moscow Neutron Monitor database 

(http://cr0.izmiran.rssi.ru/mosc/main.htm). Wavelet decomposition was applied to CR data 

using one-dimensional (1D) analysis with db2 (Daubechies-2) as the mother wavelet (Fig. 1). 

Three-scale decomposition was applied in order to decompose the data into one low-

frequency approximation (a3) and three sets of high-frequency details (d3, d2, d1). The 

resultant time-frequency variables (Fig. 3) were entered into a multilayer neural network as 

input neurons. 

http://cr0.izmiran.rssi.ru/mosc/main.htm
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Figure 1. Low-order Daubechies wavelet. 

 

 

Input-output neural network fitting was conducted using a multilayer backpropagation 

network. The standard Levenberg-Marquardt algorithm was employed with a single hidden 

layer and three hidden layer neurons, determined by performance a priori. Initial neuron 

weights were randomized, while a sigmoid (logistic) hidden layer activation function was 

used along with a hyperbolic tangent (linear) output layer activation function (Fig. 2). 

Accuracy was measured according to the root mean squared error (RMSE), while both 

parametric (r) and non-parametric (rho) correlation coefficients were employed for 

determining overall fit of each model. 

 

 
 

Figure 2. Network architecture for multilayer input-output fitting WNN. 

 

Original CR values were lagged by 30 days and entered as a single output neuron for 

prediction without autoregressive feedback. For each network analysis, a total of 50 

individual neural networks were trained with a random subset of data (70 % of cases used to 

train each network) and each was tested on the remaining cases (N = 430 for test data). 

Results from each test were averaged for a more accurate approximation of overall 

performance. This series of procedures was conducted using data both with and without 

wavelet decomposition. Finally, linear regression analysis was applied, again, both with and 

without prior wavelet transformation, for further comparison. 

Regression analyses were conducted using SPSS 17, while all other analyses were 

completed with Matlab 2011a software. 
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Figure 3. Cosmic ray impulse decomposition; original signal (s) and decomposed components (a3, d3, 

d2, d1) obtained through wavelet analysis. 
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3.  RESULTS 

 

Initial analysis of untransformed data (e.g., without prior wavelet decomposition) was 

conducted using ANN methods previously discussed to predict CR impulses from data that 

had been lagged by 30 days.  

Preliminary neural network modelling produced relatively accurate results for typical 

impulse values (RMSE = 152.41 impulses/min) with a fairly strong fit for predicted values 

(Fig. 4; r = .816, rho = .818, p < .001). 

 

 

 
 

Figure 4. Fit of target and predicted data from ANN analysis without wavelet decomposition 

 

 

 Secondary ANN modelling was employed with time-frequency variables obtained 

through wavelet analysis. It was determined that the wavelet neural network (WNN) adapted 

from previous research [4] produced results similar to the preliminary ANN with slightly 

greater average accuracy (RMSE = 151.03 impulses/min) and moderately improved overall 

fit for values predicted 30 days in advance (Fig. 5; r = .843, rho = .853, p < .001). 

Finally, a series of linear regression analyses were conducted using a random sample of 

lagged input data. The first employed lagged data from the original signal without wavelet 

decomposition. A significant model was obtained with accuracy less than that revealed for 

either ANN or WNN analysis (RMSE = 182.76 impulses/min). Overall fit for target and 

predicted values, while significant, was also less than that found for previous analyses (Fig. 

6; r = .747, rho = .801, p < .001). 
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Figure 5. Fit of target and predicted data from WNN analysis. 

 

 

 
 

Figure 6. Fit of target and predicted data from initial regression analysis without wavelet 

transformation. 

 

 

Next, time-frequency variables obtained through wavelet analysis were entered into a 

second linear regression with full variable entry. As with the neural network models, 
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employing wavelet decomposed input variables showed a slight increase in average accuracy 

(RMSE = 178.31 impulses/min) compared to analysis with standard predictor values. This 

was also the case for overall data fit for target and predicted values, showing an improved 

overall fit (Fig. 7; r = .772, rho = .807, p < .001) compared to the previous regression model. 

 

 
 

Figure 7. Fit of target and predicted data from secondary regression analysis with wavelet 

transformation. 

 

 

 In order to compare average fit of predicted values to target data between models, a 

Fisher r to z transformation was applied to correlation coefficients (r to z = 0.5[ln(1+r) - ln(1-

r)]) in order to facilitate z-test comparisons and difference probabilities. The WNN used 

revealed a significantly improved fit of target data compared to linear models used (p < .001). 

While the output fit for the WNN model was not significantly greater than the standard ANN 

model (p > .05), both models produced significantly greater data fit compared to regression 

analysis (z = 3.88 for WNN and 2.61 for ANN, ps < .01). Finally, while the combination of 

both wavelet decomposition and linear regression produced an overall fit that was not 

significantly reduced compared to the ANN model (p > .05), the WNN analysis outperformed 

the wavelet regression (z = 3.01, p < .01) 

 

Table 1. Accuracy (RMSE) and parametric fit (r) for each model. 

Model RMSE r 

ANN 152.41 .816 

WNN 151.03 .843 

Regression 182.76 .747 

Wavelet-Regression 178.31 .772 
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4.  CONCLUSIONS 

 

As found in a number of previous research protocols [4,10], the combination of both 

wavelet analysis and ANNs can significantly improve overall accuracy and fit of statistical 

predictions. Although standard analyses may be perfectly capable of achieving specific 

research goals, a combination of analytical methods can often improve or enhance existing 

results. While neural networks have previously been used for prediction in a number of areas, 

including space weather [1], pattern recognition [11], and medical diagnosis [12], applying 

signal processing techniques from wavelet analysis appears capable of introducing greater 

accuracy for statistical modelling in this context [4,10]. 

The current results both confirm and extend the use of WNN models through additional 

comparison with linear statistical methods. Furthermore, the specific application of wavelet 

decomposition in combination with regression analysis was proven more effective than 

standard processing when compared to neural network models. That predictive space weather 

modelling has seen increased use and effectiveness recently [1] suggests a further need to 

examine the potential use of ANNs in this specific context. Along with the current results, 

this research implies the need to expand data prediction to alternate statistical techniques 

which may improve both accuracy and overall understanding of the phenomena in question 

[13]. 

Given that CR activity has been associated with effects on a range of microelectronics, 

particularly satellite systems [14-15], it may be important to develop early prediction of this 

type of event with greater accuracy. Furthermore, these techniques should be explored for a 

range of space weather events for which early warning applications may be relevant. 

Predictive modelling of space weather phenomena could be beneficial to a diverse array of 

research areas including microelectronic functioning [9], solar-geomagnetic [1] and 

interplanetary conditions [16], and even human biology [17]. 
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