Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Analiza modelowa efektywności chlorowania wody w miejskiej sieci wodociągowej
Języki publikacji
Abstrakty
Chlorination of water belongs to the basic methods of its disinfection and is commonly used, permanently or periodically, as the final stage of water treatment in many water treatment stations in Poland. Although, the chlorination process is a well-known phenomenon, the selection of an appropriate dose of disinfectant is still a difficult task. The lack of chlorine in the water or its excessively low content (below 0.2 mg × dm–3) may result in the lack of microbiological protection of water flowing through the pipes. A reverse situation is also unfavourable. The use of too high doses of chlorine at the entrance to the network, on the one hand, ensures adequate disinfectant concentration even in the fittings of the network, on the other hand, it can lead to dangerous for health disinfection by-products (DBPs) including trihalomethanes (THMs). The selection of the proper dose of chlorine should take into account factors affecting its consumption, chemical parameters of water as well as hydraulic parameters of water transport. Such possibilities are available due to application of numerical modelling to study the transport of chlorine in water. The aim of the presented research is to analyse the effectiveness of chlorination of water in a selected water supply network. Simulation tests were carried out for the various doses of disinfectant supplied to the network for the assumed duration of the simulation – 168 hours. The qualitative model was developed in the Epanet 2.0 software using a hydraulic model of the tested network. The first order chlorine decay reaction was assumed to modelling studies, with applied literature values of decay rate of chlorine in water. The results of simulation tests of chlorine transport in the network revealed difficulties in choosing the right dose of chlorine necessary to ensure microbiological protection of water in the network. The forced flow allowed effective disinfection of water.
Czasopismo
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland, phone: +48 81 538 44 81.
autor
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland, phone: +48 81 538 44 81.
Bibliografia
- [1] (EU) 2015/1787 of 6 October 2015 Commission Directive amending Annexes II and III to Council Directive 98/83/EC on the quality of water intended for human consumption. Available from: http://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32015L1787.
- [2] Dz.U. 2015, poz. 1989 Regulation of the Minister of Health of 2015 on the quality of water intended for human consumption. Available from: http://isap.sejm.gov.pl/DetailsServlet?id=WDU20150001989.
- [3] WHO Guidelines for drinking water quality, 4th ed. WHO. Geneva. 2011. Available from: http:www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/.
- [4] Haas CN. Disinfection. In: Letterman RD. editor. Water quality and treatment. vol 5. Denver, Colorado: McGraw-Hill, Inc.; 1999. ISBN: 0-07-001659-3
- [5] Gang DC, Clevenger TE, Banerji SK. J Environ Inform. 2003;1(1):21-7. DOI: 10.3808/jei.200300003.
- [6] Brown D, Bridgeman J, West JR. Rev Environ Sci Biotechnol. 2011;10:79-99. DOI: 10.1007/s11157-011-9229-8.
- [7] Blokker M, Vreeburg J, Speight V. Pocedia Eng. 2014;70:172-80. DOI: 10.1016/j.proeng.2014.02.020.
- [8] Zhao Y, Yang YJ, Shao Y, Neal J, Zhang T. Water Res. 2018;141:32-45. DOI: 10.1016/j.watres.2018.04.048.
- [9] Goyal RV, Patel HM. Appl Water Sci. 2015;5:311-9. DOI: 10.1007/s13201-014-0193-7.
- [10] Boccelli DL, Tryby ME, Uber JG, Summers RS. Water Res. 2003;37:2654-66. DOI: 10.1016/S0043-1354(03)00067-8.
- [11] Chang EE, Chiang PC, Chao SH, Lin YL. Chemosphere. 2006;64(7):1196-203. DOI: 10.1016/j.chemosphere.2005.11.036.
- [12] Rand JL, Gagnon GA, Knowles A. Water Practice Technol. 2014;9(4):491-501. DOI: 10.2166/wpt.2014.055.
- [13] Digiano FA, Zhang W. JAWWA. 2005;97(1):77-85. DOI: 10.1002/j.1551-8833.2005.tb10805.x.
- [14] Ates N, Kaplan SS, Sahinkaya E, Kitis M, Dilek FB, Yetis U. J Hazard Mater. 2007;142(1-2):526-34. DOI: 10.1016/j.jhazmat.2006.08.076.
- [15] Villanueva CM, Gagniere B, Monfort C, Nieuwenhuijsen MJ, Cordier S. Environ Res. 2007;103:211-20. DOI: 10.1016/j.envres.2006.11.001.
- [16] Tinker SC, Moe CL, Klein M, Flanders WD, Uber J, Amirtharajah A, et al. J Water Health. 2009;7(2):332-43. DOI: 10.2166/wh.2009.022.
- [17] Brown D, Bridgeman J, West JR. Rev Environ Sci Biotechnol. 2011;10:79-99. DOI: 10.1007/s11157-011-9229-8.
- [18] Jae CA, Su Won L, Kevin Y, Ja Yong K. Application of EPANET for the determination of chlorine dose and prediction of THMs in a water distribution system. Sustain Environ Res. 2012;22(1):31-8. Available from: https://businessdocbox.com/77194481-Green_Solutions/Application-of-epanet-for-the-determination-of-chlorine-dose-and.html.
- [19] Zhao Y, Yang YJ, Shao Y, Neal J, Zhang T. Water Res. 2018;141:32-45. DOI: 10.1016/j.watres.2018.04.048.
- [20] Kim H, Kim S, Koo J. Procedia Eng. 2015;119:370–8. DOI: 10.1016/j.proeng.2015.08.897.
- [21] Clark RM, Haught RC. J Water Resources Plan Manage. 2005;131(3):208-17. DOI: 10.1061/(ASCE)0733-9496(2005)131:3(208).
- [22] Powell JC, Hallam NB, West JR, Forster CF, Simms J. Water Res. 2000;34(1):117-26. DOI: 10.1016/S0043-1354(99)00097-4.
- [23] Monteiro L, Viegas RMC, Covas DIC, Menaia J. Modelling chlorine residual decay as influenced by temperature. Water Environ J. 2015;29:331-7. DOI: 10.1111/wej.12122.
- [24] Hua F, West JR, Barker RA, Forster CF: Modelling of chlorine decay in municipal, Water Res. 1999;33(12):2735-46. Available from: https://reader.elsevier.com/reader/sd/pii/S0043135498005193?token=BA9A5A5A4A7B2C6CC20286AD3CE30AAFBBF91983890287178C8F0A21C3BDC77283546746A33CE9084B337A07B67A8E32.
- [25] Hallamn NB, West JR, Forster CF, Powell JC, Spencer I. Water Res. 2002;36:3479-88. DOI: 10.1016/S0043-1354(02)00056-8.
- [26] Musz-Pomorska A, Widomski MK, Kępa J. Ecol Chem Eng A. 2019;26(1-2):73-83. DOI: 10.2428/ecea.2019.26(1-2)8.
- [27] Musz-Pomorska A, Widomski MK, Pyła A. Ecol Chem Eng A. 2018;25(1):29-38. DOI: 10.2428/ecea.2018.25(1)3.
- [28] Rossman LA. EPANET 2Users Manual. Risk Reduction Engineering Laboratory, US Environmental Protecion Agency, Cincinnati, OH 2000. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj7lfTIn8PuAhVltIsKHbLeCiwQFjAAegQIAhAC&url=https%3A%2F%2Fwww.microimages.com%2Fdocumentation%2FTutorials%2FEpanet2UserManual.pdf&usg=AOvVaw0Uz9-TI6GOiAAbbnbLd.
- [29] AQUIS, Water supply network management. Available from: http://www.it.kelvin.pl
- [30] Mike Urban, Modeling of water supply systems. Available from: http://www.mikebydhi.com
- [31] Tiruneh AT, Debessai TY, Bwembya GC, Nkambule SJ, Zwane L. JWARP. 2019;11(1):37-52. DOI: 10.4236/jwarp.2019.111003.
- [32] Roopali V, Goyal H, Patel M. Appl Water Sci. 2015;5:311-9. DOI:10.1007/s13201-014-0193-7.
- [33] Monteiro L, Figueiredo D, Dias S, Freitas R, Covas D, Menaia J, et al. Procidia Eng. 2014;70:1192-200. DOI: 10.1016/j.proeng.2014.02.132.
- [34] Ozdemir ON, Ucak A. Simulation of chlorine decay in drinking-water distribution systems. J Environ Eng. 2002;128(1):31-9. Available from: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9372%282002%29128%3A1%2831%29?src=recsys&.
- [35] Musz-Pomorska A, Widomski MK, Matczuk A, Sadura K. E3S Web Conf. 2019;100:00054. DOI: 10.1051/e3sconf/201910000054.
- [36] Shreedhar R. Modeling of residual chlorine for water distribution network for a pilot village. Int J Sci Eng Res. 2015;6(3):469-76. Available from: https://www.researchgate.net/publication/274375812_Modeling_of_residual_chlorine_for_water_distribution_network_for_a_pilot_village.
- [37] Shu S, Liu S, Wang X, Yu L, Shu S, Zhang D, et al. Int Conf MACE. 2010;1918-21. DOI: 10.1109/MACE.2010.5536510.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa59fe7e-8c6f-4b9f-8bb8-90d3a37440ad