PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ternary photonic crystal with left-handed material layer for refractometric application

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A ternary photonic crystal with left-handed material (LHM) layer is examined for refractometric applications. One of the layers is assumed to be air and treated as an analyte. The transmittance from the ternary photonic crystal is studied in details and the wavelength shift due to the change in the refractive index of the analyte is investigated. The transmittance is investigated with the parameters of the LHM. It is found that the wavelength shift can be significantly enhanced with the decrease of both real part of the LHM permittivity and thickness.
Twórcy
autor
  • Physics Department, Islamic University of Gaza, Palestine
Bibliografia
  • [1] S. Sandhu, S. Fan, M. Yanik, M. Povinelli, Advances in theory of photonic crystal, J. Light Wave Technol. 24 (2006) 4493–4501.
  • [2] I. Kriegel, F. Scotognella, Disordered one-dimensional photonic structures composed by more than two materials with the same optical thickness, Opt. Commun. 338 (2015) 523–527.
  • [3] Z. Zare, A. Gharaati, Investigation of band gap width in ternary 1D photonic crystal with left-handed laye, Acta Phys. Pol. A 125 (2014) 36–38.
  • [4] C.J. Wu, Y.H. Chung, T.J. Yang, B.J. Syu, Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal, Prog. Electromagn. Res. 102 (2010) 81–93.
  • [5] A. Banerjee, Enhanced refractometric optical sensing by usingone-dimensional ternary photonic crystals, Prog. Electromagn. Res., PIER 89 (2009) 11–22.
  • [6] S.K. Awasthi, U. Malaviya, S.P. Ojha, Enhancement of omnidirectional total-reflection wavelength range by using one dimensional ternary photonic band gap material, J. Opt. Soc. Am. B 23 (2006) 2566–2571.
  • [7] F. Xue, S. Liu, H. Zhang, X. Kong, Y. Wen, Wang L, S. Qian, The theoretical analysis of omnidirectional photonic band gaps in the one-dimensional ternary plasma photonic crystals based on Pell quasi-periodic structure, Opt. Quant. Electron. 49 (2017) 19.
  • [8] S. Sharma, R. Kumar, K. Singh, A. Kumar, V. Kumar, Omnidirectional reflector using linearly graded refractive index profile of 1D binary and ternary photonic crystal, Optik 126 (2015) 1146–1149.
  • [9] S.K. Awasthi, S.P. Ojha, Design of a tunable optical filter by using one-dimensional ternary photonic band gap material, Prog. Electromagn. Res. M 4 (2008) 117–132.
  • [10] A. Banerjee, Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures, Prog. Electromagn. Res. Lett. 11 (2009) 129–137.
  • [11] V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phy. Usp. 10 (1968) 509–514.
  • [12] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in mettalic mesostructures, Phys. Rev. Lett. 76 (1996) 4773–4776.
  • [13] J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE. Trans. Microw. Theory Tech. 47 (1999) 2075–2090.
  • [14] R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292 (2001) 77–79.
  • [15] S.A. Taya, Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide, Optik 126 (2015) 1319–1323.
  • [16] S.A. Taya, Theoretical investigation of slab waveguide sensor using anisotropic metamaterials, Opt. Appl. 45 (2015) 405–417.
  • [17] K. Tiefenthaler, W. Lukosz, Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B 6 (1989) 209–220.
  • [18] R. Horvath, G. Fricsovszky, E. Pap, Application of the optical waveguide light mode spectroscopy to monitor lipid bilayer phase transition, Biosens. Bioelectron. 18 (2003) 415–428.
  • [19] B. Kuswandi, Simple optical fiber biosensor based on immobilized enzyme for monitoring of trace having metal ions, Anal. Bioanal. Chem. 376 (2003) 1104–1110.
  • [20] E. Udd, An overview of fiber optic sensors, Rev. Sci. Instrum. 66 (1995) 4015–4030.
  • [21] F.C. Chien, S.J. Chen, A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes, Biosens. Bioelectron. 20 (2004) 633–642.
  • [22] J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sens. Actuators B 54 (1999) 3–15.
  • [23] N. Skivesen, R. Horvath, H. Pedersen, Optimization of metal-clad waveguide sensors, Sens. Actuators B 106 (2005) 668–676.
  • [24] N. Skivesen, R. Horvath, H. Pedersen, Peak-type and dip-type metal-clad waveguide sensing, Opt. Lett. 30 (2005) 1659–1661.
  • [25] N. Skivensen, R. Horvath, S. Thinggaaed, N.B. Larsen, H.C. Pedersen, Deep-probe metal-clad waveguide biosensors, Biosens. Bioelectron. 22 (2007) 1282–1288.
  • [26] S.A. Taya, Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor, Opto-Electron. Rev. 22 (2014) 252–257.
  • [27] S.A. Taya, P-polarized surface waves in a slab waveguide with left-handed material for sensing applications, J. Magn. Magn. Mater. 377 (2015) 281–285.
  • [28] G. Wu, Song Liu, S. Zhong, Numerical analysis of propagation characteristics of electromagnetic wave in lossy left-handed material media, Optik 125 (2014) 4233–4237.
  • [29] M. Born, E. Wolf, Principles of Optics, Cambridge University Press, United Kingdom, 2003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa59edc8-c8d5-42f6-a02f-c05d954e0638
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.