PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of Mesocosm to Remove Nutrients with Constructed Wetlands

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oxidizing bacteria in the roots of the plant has a unique ability of absorbing pollutants in the wastewater, thus they considered as a useful method for wastewater treatment. Using three plants, namely Typha, Phragmites australis, and Scirpus, we performed a series of mesocosms experiments in Arba Minch, Ethiopia for the removal of nutrients by constructed wetlands. We observed that the nutrients reached the removal efficiencies of 99.1% for Typha plant, has better removal efficiency than Phragmites australis and Scirpus. The results explore the oxidizing bacteria activity in different plants and that led to enhance the removal efficiency of pollutants in wastewater.
Rocznik
Strony
42--51
Opis fizyczny
Bibliogr. 29 poz., tab., rys.
Twórcy
  • Department of Water Supply and Environmental Engineering, Arba Minch University, Arba Minch, Ethiopia
autor
  • Department of Water Supply and Environmental Engineering, Arba Minch University, Arba Minch, Ethiopia
  • Department of Water Supply and Environmental Engineering, Arba Minch University, Arba Minch, Ethiopia
Bibliografia
  • 1. Al-Omari A., Fayyad M., 2003. Treatment of domestic wastewater by subsurface flow constructed wetlands in Jordan. Desalination 155, 27-39.
  • 2. Ojstrsek A., Fakin D., Vrhovsek D., 2007. Residual dyebath purification using a system of constructed wetland. Dyes and Pigments 74, 503-507.
  • 3. Antoniasdis A., Takavakoglou V., Zalidis G., Poulios I., 2007. Development and evaluation of an alternative method for municipal wastewater treatment using homogeneous photocatalysis and constructed wetlands. Catalysis Today, 124, 260-265.
  • 4. Brix H., Arias C. and Johansen N.H., 2003. Experiments in a two-stage constructed wetland system:nitrification capacity and effects of recycling on nitrogen removal. In: Wetlands: Nutrients, Metals andMass Cycling, J. Vymazal, (ed.), Backhuys Publishers, Leiden, The Netherlands, pp. 237-258.
  • 5. Chi-Yuan Lee, Chun-Chih Lee, Fang-Yin Lee, Szu-King Tseng, Chiu-Tung Lia, 2004. Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads. Bioresour. Technol. 92, 173-179.
  • 6. Ciria M.P., Solano M.L., Soriano P., 2005. Role of marchophye Typha latifolia in a constructed wetland for wastewater treatment and assessment for its potential as a biomass fuel. Biosyst Eng. 92(4), 535-544.
  • 7. Tanner C.C., Headley T.R., 2011. Components of floating emergent macrophytes treatment wetlands influencing removal of storm water pollutants. Ecol. Eng. 37, 474-486.
  • 8. Calheiros C.S.C., Rangel A.O.S.S., Castro P.M.L., 2007. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Wat. Res. 41, 1790–1798.
  • 9. Daniels R., 2001a. Enter the root-zone: green technology for the leather manufacturer, part 1. World Leather 14 (4), 63–67.
  • 10. Daniels R., 2001b. Enter the root-zone: green technology for the leather manufacturer, part 3. World Leather 14 (6), 85–88.
  • 11. Dong Qing Zhang, Jinadasa K.B.S.N., Gersberg R.M. , Yu Liu, Wun Jern Ng, Soon Keat Tan, 2014. Application of constructed wetlands for wastewater treatment in developing countries e A review of recent developments (2000-2013). J. Environ. Manage. 141, 116-131.
  • 12. Day J.W. et al., 2004. The use of wetlands in the Mississippi Delta for wastewater assimilation: a review. Journal of Ocean and Coastal Management, 47, 671-691.
  • 13. Drio A., Frost C.A., Smith K.A., Grace J., 1997. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Sci. Technol. 35 (5), 95–102.
  • 14. Grafias P, Xekoukoulotakis N.P, Mantzavinos D.E., Diamadopoulos E. 2010. Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Res., 44, 2773–2780
  • 15. Headley T, Fonder N, 2010. Systematic nomenclature and reporting for treatment wetlands. In: J. Vymazal (Ed.), Water and Nutrient Management in Natural and Constructed Wetlands, Springer, Dordrecht, The Netherlands, pp. 191–220
  • 16. Dunbabin J.S., Bowmer K.H., 1992. Potential use of constructed wetlands for treatment of industrial wastewater containing metals. Sci. Total Environ. 111(2-3), 151-168.
  • 17. Kadlec R.H., Wallace S., 2009. Treatment Wetlands. CRC Press, Boca Raton, FL. Luoma, S.N., 1983. Bioavailability of trace metals to aquatic organisms a review. Sci. Total Environ. 28, 1–22.
  • 18. Keffala C., Gharbi A. 2005. Nutrient and bacterial removal in constructed wetlands treating domestic wastewater. Desalination 185, 383-389.
  • 19. Kucuk O.S., Sengul F., Kapdan I.K., 2003. Removal of ammonia from tannery effluents in a reed bed constructed wetland. Water Sci. Technol. 48(11– 12), 179–186.
  • 20. Mantori P., Marmiroli M., Maestri E., Tagliavimi S., Piccinini S., Marmiroli N., 2005. Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresour. Technol. 88, 85-94.
  • 21. Ruan X., Xue Y., Wu J., Ni L., Sun M., Zhan X., 2006. Treatment of polluted river water using pilot-scale constructed wetlands. Bulletin of Environmental Contamination and Technology 76, 90-97.
  • 22. Sala M.M., Jurgens K., 2004. Bacterial growth on macrophyte leachate in the presence and absence of bacteriorous protists. Arch. Hydro. Biol. 161, 371–389.
  • 23. Scholz M., Sadowski A.J., Harrington R., Carrol P., 2007. Integrated constructed wetlands assessment and design for phosphate removal. BIOSYST ENG97. 415-423.
  • 24. Shuh-Ren Jing, Yin-Feng Lin, Der-Yun Lee, Tze- Wen Wang, 2001. Nutrient removal from polluted river water using constructed wetlands. Bioresour. Technol.76. 131-135.
  • 25. Nerrala S., Nearer R.W., Lesiker B.J., Persyn R.A., 2000. Improvement of domestic wastewater by subsurface flow constructed wetlands. Bioresour. Technol. 75. 19-25.
  • 26. Saarinen T. 1996. Biomass and production of two vascular plants in a boreal mesotrophic fen. Can. I. Bot. 74: 934-938
  • 27. Sawaittayolthin V., Polpvasert C., 2007. Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresour. Technol. 98, 565-570.
  • 28. Shubiao Wu, Brix P.K.H., Vymazal J., Renjie Dong, 2014. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Wat. Res. 57, 40-55.
  • 29. Zhiwen Song, Zhaopei Zheng, Jie Li, Xianfeng Sun, Xiaoyuan Han, Wei Wang, Min Xu, 2006. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecol. Eng. 26(3), 272-282.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa57bdd1-7aa8-4782-a118-4912e5643250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.