PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SU-8 based planar metamaterials with fourfold symmetry as selective terahertz absorbers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report on the absorption properties of polarization-insensitive transmissive and reflective metamaterial absorbers based on two planar aluminium periodic structures and SU-8 epoxy resist. These absorbers were investigated using numerical simulation and experimental methods in the terahertz range (below 2 THz). SU-8 is a very promising organic material for dielectric layers in planar metamaterials, because its application simplifies the process of fabricating these structures and significantly reduces the fabri-cation time. The experimental absorption of the metamaterial absorbers has narrowband characteristics that were consistent with the numerical simulations. Power flow analysis in the transmissive metama-terial unit cell shows that the absorption in the terahertz range occurs primarily in the SU-8 layer of the absorber.
Twórcy
  • Faculty of Technical Physics, Poznan University of Technology, 3 Piotrowo St., 60-965 Poznan, Poland
  • Institute of Electron Technology, 32/46 Al. Lotnikow, 02-668 Warsaw, Poland
  • Institute of Electron Technology, 32/46 Al. Lotnikow, 02-668 Warsaw, Poland
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Urbanowicza St., 00-908 Warsaw, Poland
autor
  • Faculty of Technical Physics, Poznan University of Technology, 3 Piotrowo St., 60-965 Poznan, Poland
Bibliografia
  • [1] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184–4187, http://dx.doi.org/10.1103/PhysRevLett.84.4184.
  • [2] H. Tao, W.J. Padilla, X. Zhang, R.D. Averitt, Recent progress in electromagnetic metamaterial devices for terahertz applications, IEEE J. Sel. Top. Quantum Electron. 17 (2011) 92–101, http://dx.doi.org/10.1109/JSTQE.2010.2047847.
  • [3] W.J. Padilla, M.T. Aronsson, C. Highstrete, M. Lee, A.J. Taylor, R.D. Averitt, Electrically resonant terahertz metamaterials: theoretical and experimental investigations, Phys. Rev. B 75 (2007) 041102, http://dx.doi.org/10.1103/ PhysRevB.75.041102.
  • [4] C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers, Adv. Mater. 24 (2012) OP98–OP120, http://dx.doi.org/10.1002/adma.201200674.
  • [5] O. Paul, C. Imhof, B. Reinhard, R. Zengerle, R. Beigang, Negative index bulk metamaterial at terahertz frequencies, Opt. Express 16 (2008) 6736–6744, http://dx.doi.org/10.1364/OE.16.006736.
  • [6] H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization, Opt. Express 16 (2008) 7181–7188, http://dx.doi.org/10. 1364/OE.16.007181.
  • [7] H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W.J. Padilla, R.D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization, Phys. Rev. B 78 (2008) 241103, http://dx.doi.org/10.1103/PhysRevB.78.241103.
  • [8] N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging, Phys. Rev. B 79 (2009) 125104, http://dx.doi.org/10.1103/PhysRevB. 79.125104.
  • [9] H. Kong, G. Li, Z. Jin, G. Ma, Z. Zhang, C. Zhang, Polarization-independent metamaterial absorber for terahertz frequency, J. Infrared Milli Terahz Waves 33 (2012) 649–656, http://dx.doi.org/10.1007/s10762-012-9906-x.
  • [10] B. Grze´skiewicz, A. Sierakowski, J. Marczewski, N. Pałka, E. Wolarz, Polarization-insensitive metamaterial absorber of selective response in terahertz frequency range, J. Opt. 16 (2014) 105104, http://dx.doi.org/10.1088/2040-8978/16/10/105104.
  • [11] Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, Y.-L. Liu, Dual band terahertz metamaterial absorber: design, fabrication, and characterization, Appl. Phys. Lett. 95 (2009) 241111, http://dx.doi.org/10.1063/1.3276072.
  • [12] H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, A dual band terahertz metamaterial absorber, J. Phys. D Appl. Phys. 43 (2010) 225102, http://dx.doi.org/10.1088/0022-3727/43/22/225102.
  • [13] B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, L.-L. Wang, A novel dual-band terahertz metamaterial absorber for a sensor application, J. Appl. Phys. 117 (2015) 014504, http://dx.doi.org/10.1063/1.4905261.
  • [14] X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, H. Li, Polarization-independent wide-angle triple-band metamaterial absorber, Opt. Express 19 (2011) 9401–9407, http://dx.doi.org/10.1364/OE.19.009401.
  • [15] R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, W. Zhang, Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber, J. Appl. Phys. 118 (2015) 083103, http://dx.doi.org/10.1063/1.4929449.
  • [16] I. Al-Naib, Y. Yang, M.M. Dignam, W. Zhang, R. Singh, Ultra-high Q even eigenmode resonance in terahertz metamaterials, Appl. Phys. Lett. 106 (2015) 011102, http://dx.doi.org/10.1063/1.4905478.
  • [17] S. Liu, H. Chen, T.J. Cui, A broadband terahertz absorber using multi-layer stacked bars, Appl. Phys. Lett. 106 (2015) 151601, http://dx.doi.org/10.1063/1.4918289.
  • [18] S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, Y. Ma, High-performance terahertz wave absorbers made of silicon-based metamaterials, Appl. Phys. Lett. 107 (2015) 073903, http://dx.doi.org/10.1063/1.4929151.
  • [19] J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, Y. Ma, Ultra-broadband terahertz metamaterial absorber, Appl. Phys. Lett. 105 (2014) 021102, http://dx.doi.org/10.1063/1.4890521.
  • [20] G. Duan, J. Schalch, X. Zhao, J. Zhang, R.D. Averitt, X. Zhang, Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies, Opt. Express 26 (2018) 2242–2251, http://dx.doi.org/10.1364/OE.26.002242.
  • [21] R. Kowerdziej, M. Olifierczuk, J. Parka, Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture, Opt. Express 26 (2018) 2443–2452, http://dx.doi.org/10.1364/OE.26.002443.
  • [22] S.J. Park, J.T. Hong, S.J. Choi, H.S. Kim, W.K. Park, S.T. Han, J.Y. Park, S. Lee, D.S. Kim, Y.H. Ahn, Detection of microorganisms using terahertz metamaterials, Sci. Rep. 4 (2014) 4988, http://dx.doi.org/10.1038/srep04988.
  • [23] M. Chen, L. Singh, N. Xu, R. Singh, W. Zhang, L. Xie, Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials, Opt. Express 25 (2017) 14089–14097, http://dx.doi.org/10.1364/OE.25.014089.
  • [24] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications—explosives, weapons and drugs, Semicond. Sci. Technol. 20 (2005) S266, http://dx.doi.org/10.1088/0268-1242/20/7/018.
  • [25] L. Viti, D. Coquillat, D. Ercolani, L. Sorba, W. Knap, M.S. Vitiello, Nanowire Terahertz detectors with a resonant four-leaf-clover-shaped antenna, Opt. Express 22 (2014) 8996–9003, http://dx.doi.org/10.1364/OE.22.008996.
  • [26] J. Grant, I. Escorcia-Carranza, C. Li, I.J.H. McCrindle, J. Gough, D.R.S. Cumming, A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer, Laser Photon. Rev. 7 (2013) 1043–1048, http://dx.doi.org/10.1002/lpor.201300087.
  • [27] S.A. Ramakrishna, T.M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, CRC Press, 2008 (Accessed February 23, 2018) https://www.crcpress.com/Physics-and-Applications-of-Negative-Refractive-Index-Materials/Ramakrishna-Grzegorczyk/p/book/9781420068757.
  • [28] D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71 (2005) 036617, http://dx.doi.org/10.1103/PhysRevE.71.036617.
  • [29] X. Chen, T.M. Grzegorczyk, B.-I. Wu, J. Pacheco, J.A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials, Phys. Rev. E 70 (2004) 016608, http://dx.doi.org/10.1103/PhysRevE.70.016608.
  • [30] D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B 65 (2002) 195104, http://dx.doi.org/10.1103/PhysRevB.65.195104.
  • [31] Z. Liu, P.W.C. Hon, A.A. Tavallaee, T. Itoh, B.S. Williams, Terahertz composite right-left handed transmission-line metamaterial waveguides, Appl. Phys. Lett. 100 (2012) 071101, http://dx.doi.org/10.1063/1.3684250.
  • [32] D. Grbovic, F. Alves, B.T. Kearney, B. Waxer, R. Perez, G. Omictin, Metal-organic hybrid resonant terahertz absorbers with SU-8 photoresist dielectric layer, J. Micro/Nanolith. MEMS MOEMS 12 (2013) 041204, http://dx.doi.org/10.1117/1.JMM.12.4.041204.
  • [33] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, SU-8: a low-cost negative resist for MEMS, J. Micromech. Microeng. 7 (1997) 121, http://dx.doi.org/10.1088/0960-1317/7/3/010.
  • [34] Y. Tian, X. Shang, Y. Wang, M.J. Lancaster, Investigation of SU8 as a structural material for fabricating passive millimiter-wave and terahertz components, J. Micro/Nanolith. MEMS MOEMS 14 (2015) https://doi.org/10.1117/1.JMM.14.4.044507.
  • [35] J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon, J. Opt. Soc. Am. B 21 (2004) 1379–1386, http://dx.doi.org/10.1364/JOSAB.21.001379.
  • [36] S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.L. Coutaz, D. Lippens, Terahertz time-domain spectroscopy of films fabricated from SU-8, Electron. Lett. 35 (1999) 243–244, http://dx.doi.org/10.1049/el:19990146.
  • [37] S. Lucyszyn, Comment: terahertz time-domain spectroscopy of films fabricated from SU-8, Electron. Lett. 37 (2001) 1267, http://dx.doi.org/10.1049/el:20010847.
  • [38] A. Ishikawa, T. Tanaka, Negative magnetic permeability of split ring resonators in the visible light region, Opt. Commun. 258 (2006) 300–3005, http://dx.doi.org/10.1016/j.optcom.2005.07.076.
  • [39] R. Singh, A.K. Azad, J.F. O’Hara, A.J. Taylor, W. Zhang, Effect of metal permittivity on resonant properties of terahertz metamaterials, Optics Lett. 33 (2008) 1506–1508, http://dx.doi.org/10.1364/OL.33.001506.
  • [40] L.D. Landau, E.M. Lifshits, Electrodynamics of Continuous Media, Pergamon, 1984.
  • [41] J. Hao, L. Zhou, M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials, Phys. Rev. B 83 (2011) 165107, http://dx.doi.org/10.1103/PhysRevB.83.165107.
  • [42] N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100 (2008) 207402, http://dx.doi.org/10.1103/PhysRevLett.100.207402.
  • [43] T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8 (2014) 1086–1101, http://dx.doi.org/10.1021/nn406627u.
  • [44] S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, S.-C. Wen, Multi-band perfect plasmonic absorptions using rectangular graphene gratings, Opt. Lett. 42 (2017) 3052–3055, http://dx.doi.org/10.1364/OL.42.003052.
  • [45] S.-X. Xia, X. Zhai, L.-L. Wang, S.-C. Wen, Plasmonically induced transparency in double-layered graphene nanoribbons, Photon. Res. J. 6 (2018) 692–702, http://dx.doi.org/10.1364/PRJ.6.000692.
Uwagi
1. This work was funded by the Polish Ministry of Science and Higher Education through the Poznan University of Technology, grant no. 06/65/DSPB/5181.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa51d436-2b61-45bf-a207-7c736c91c6cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.