Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Reliability of vehicles is characterized not only by the quality of production but also by the quality of subsequent maintenance. In this paper, we consider the possible spare parts logistics risks, as they have a huge influence on vehicles’ maintenance. One of the widespread methods to analyze the reliability of complex systems is Fault Tree Analysis (FTA). To identify and systematize all possible risks in spare parts logistics, we have built the Problem Tree. For managing identified risks, we propose a conceptual scheme of an inteligent system. In the framework of this paper, we describe one of the modules that make up this intelligent system. The proposed software module will help to choose the spare parts’ suppliers taking into account their reliability from the logistical point of view. It was tested with the use of real data from an automotive manufacturer.
Czasopismo
Rocznik
Tom
Strony
105--116
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Kazan (Volga Region) Federal University, Syuyumbike av., 10a, 423812, Naberezhnye Chelny, Russia
autor
- Kazan (Volga Region) Federal University, Syuyumbike av., 10a, 423812, Naberezhnye Chelny, Russia
autor
- Kazan (Volga Region) Federal University, Syuyumbike av., 10a, 423812, Naberezhnye Chelny, Russia
autor
- Kazan (Volga Region) Federal University, Syuyumbike av., 10a, 423812, Naberezhnye Chelny, Russia
Bibliografia
- 1. Mo, J.P.T. & Cook, M. Quantitative lifecycle risk analysis of the development of a just-in-time transportation network system. Advanced Engineering Informatics. 2018. Vol. 36. P. 76-85.
- 2. Automotive Parts Remanufacturing Market: Global Industry Analysis and Forecast 2016-2024. Persistence Market Research. 2015. Available at: http://www.persistencemarketresearch.com/market-research/automotive-parts-remanufacturingmarket.asp.
- 3. Galarza-Urigoitia, N. & Rubio-García, B. & Gascón-Álvarez, J. Predictive maintenance of wind turbine low-speed shafts based on an autonomous ultrasonic system. Engineering Failure Analysis. 2019. Vol. 103. P. 481-504.
- 4. Project Management Institute. A guide to the project management body of knowledge. 1996. PMI Publishing Division. NC, USA.
- 5. Valitov, S.M. & Sirazetdinova, A.Z. Project risks’ management model on an industrial enterprise. Asian Social Science. 2014. Vol. 10. No. 21. P. 242-249.
- 6. Marshall, A. & Ojiako, U. & Wang, V. & et al. Forecasting unknown-unknowns by boosting the risk radar within the risk intelligent organization. International Journal of Forecasting. 2019. Vol. 35. No. 2. P. 644-658.
- 7. Kasprowicz, T. Quantitative assessment of construction risk. Archives of Civil Engineering. 2017. Vol. 63. No. 2. P. 55-66.
- 8. Makarova, I. & et al. Problems, risks and prospects of ecological safety’s increase while transition to green transport. In: Nathanail, E. & Karakikes, I. (eds). Data Analytics: Paving the Way toSustainable Urban Mobility. CSUM 2018. Advances in Intelligent Systems and Computing. 2018. Vol. 879. P. 172-180. Springer, Cham.
- 9. Jaber, J.O. & Elkarmi, F. & Kostas, A. Employment of renewable energy in Jordan: Current status, SWOT and problem analysis. Renewable and Sustainable Energy Reviews. 2015. Vol. 49. P. 490-499.
- 10. Wang, F. & et al. Fault tree analysis of the causes of urban smog events associated with vehicle exhaust emissions: A case study in Jinan, China. Science of the Total Environment. 2019. Vol. 668. P. 245-253.
- 11. Lokuge, W. & et al. Predicting the probability of failure of timber bridges using fault tree analysis. Structure and Infrastructure Engineering. 2019. Vol. 15. No. 6. P. 783-797.
- 12. Sun, Y. & Deng, D. Research on the defects and improvement of internal control of scientific research funds in colleges and universities based on FMEA model. Proceedings of the 2017 International Conference on Service Systems and Service Management. Dalian. 2017. P. 1-4.
- 13. Lombardi, M.E. FMEA for Lean Manufacturing. Proceedings of the 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. Saratoga Springs, NY. 2011. P. 1-2.
- 14. Kowsari, M. & et al. Calibration of ground motion models to Icelandic peak ground acceleration data using Bayesian Markov Chain Monte Carlo simulation. Bulletin of Earthquake Engineering. 2019. Vol. 17. No. 6. P. 2841-2870.
- 15. Li, W. & He, M. & Sun, Y. & Cao, Q. A proactive operational risk identification and analysis framework based on the integration of ACAT and FRAM. Reliability Engineering and System Safety. 2019. Vol. 186. P. 101-109.
- 16. Ma, D. & et al. Constructing Bayesian network by integrating FMEA with FTA. Proceedings of the Fourth International Conference on Instrumentation and Measurement. Computer, Communication and Control. Harbin. 2014. P. 696-700.
- 17. Guo, J. & et al. Hydro-pneumatic suspension gasbag reliability improvement based on FMEA and FTA. Proceedings of the 10th International Conference on Reliability, Maintainability and Safety (ICRMS). Guangzhou. 2014. P. 592-594.
- 18. Sarbayev, M. & Yang, M. & Wang, H. Risk assessment of process systems by mapping fault tree into artificial neural network. Journal of Loss Prevention in the Process Industries. 2019. Vol. 60. P. 203-212.
- 19. Zarbakhshnia, N. & Soleimani, H. & Ghaderi, H. Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria. Applied Soft Computing. 2018. Vol. 65. P. 307-319.
- 20. Prakasha, A. & Agarwala, A. & Kumar, A. Risk assessment in automobile supply chain. Materials Today: Proceedings. 2018. Vol. 5. P. 3571-3580.
- 21. Wang, L. & Foerst, K. & Zimmermann, F. Supply chain risk management in the automotive industry: cross-functional and multi-tier perspectives. Dynamic and Seamless Integration of Production, Logistics and Traffic. Abele, E. & et al. (eds.). Switzerland: Springer International Publishing. 2017. P. 119-144.
- 22. Galkin, A. & Dolia, C. & Davidich, N. The role of consumers in logistics systems transp. Research Procedia. 2017. Vol. 27. P. 1187-1194.
- 23. Zimmer, K. & Fröhling, M. & Breun, P. & Schultmann, F. Assessing social risks of global supply chains: A quantitative analytical approach and its application to supplier selection in the German automotive industry. Journal of Cleaner Production. 2017. Vol. 149. P. 96-109.
- 24. Yi, X.J. & Shi, J. & Dhillon, B.S. & et al. A new reliability analysis method for repairable systems with closed‐loop feedback links. Qual Reliab Engng Int. 2018. Vol. 34. P. 298-332.
- 25. Rezapour, S. & Farahani, R.Z. & Pourakbar, M. Resilient supply chain network design under competition: A case study. European Journal of Operational Research. 2017. Vol. 259. P. 1017-1035.
- 26. Sarbayev, M. & Yang, M. & Wang, H. Risk assessment of process systems by mapping fault tree into artificial neural network. Journal of Loss Prevention in the Process Industries. 2019. Vol. 60. P. 203-212.
- 27. Rashidi, K. & Cullinane, K. A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy. Expert Systems with Applications. 2019. Vol. 121. P. 266-281.
- 28. Makarova, I. & Shubenkova, K. & Buyvol, P. & Mukhametdinov, E. Intellectualization of the spare parts supplier selection by the analysis of multi-criterial solutions. Lecture Notes in Networks and Systems. 2018. Vol. 36. P. 300-310.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa4d9ca3-18f4-4335-8bb7-cd714e44e58d