PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phosphorus removal and recovery from domestic wastewater is urgent nowadays. A novel process of nutrients removal coupled with phosphorus recovery from domestic sewage was proposed and optimization of induced crystallization reaction was performed in this study. The results showed that 92.3% of phosphorus recovery via induced Hydroxyapatite crystallization was achieved at the optimum process parameters: reaction time of 80 min, seed crystal loads of 60 g/L, pH of 8.5, Ca/P mole ratio of 2.0 and 4.0 L/min aeration rate when the PO43-P concentration was 10 mg/L in the influent, displaying an excellent phosphorus recovery performance. Importantly, it was found that the effect of reaction temperature on induced Hydroxyapatite crystallization was slight, thus favoring practical application of phosphorus recovery method described in this study. From these results, the proposed method of induced HAP crystallization to recover phosphorus combined with nutrients removal can be an economical and effective technology, probably favoring the water pollution control and phosphate rock recycle.
Rocznik
Strony
33--38
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
  • Anhui Science and Technology University, Fengyang, PR China College of Resource and Environment
  • Ministry of Agriculture, Bengbu, PR China Key Laboratory of Bio-organic Fertilizer Creation
autor
  • Anhui Science and Technology University, Fengyang, PR China College of Resource and Environment
Bibliografia
  • [1]. APHA (2005). Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC.
  • [2]. Grimvall, A., Stålnacke, P. & Tonderski, A. (2000). Time scales of nutrient losses from land to sea-a European perspective, Ecological Engineering, 14, 4, pp. 363-371.
  • [3]. Kamika, I., Coetzee, M., Mamba, B.B., Msagati, T. & Momba, M. (2014). The impact of microbial ecology and chemical profile on the Enhanced Biological Phosphorus Removal (EBPR) Process: A case study of northern wastewater treatment works, Johannesburg, International Journal of Environmental Research and Public Health, 11, 3, pp. 2876-2898.
  • [4]. Liu, Z.H., Pruden, A., Ogejo, J.A. & Knowlton, K.F. (2014). Polyphosphate-and Glycogen-Accumulating Organisms in one EBPR system for liquid dairy manure, Water Environment Research, 86, 7, pp. 663-671.
  • [5]. Lu, Y., Wang, H., Kotsopoulos, T.A. & Zeng, R.J. (2016). Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process, Applied Microbiology and Biotechnology, pp. 1-8.
  • [6]. Lv, J. & Yuan, L. (2015). Effects of chemical phosphate precipitation in the sidestream process on biological phosphorus removal at the anaerobic stage in an anaerobic-aerobic sequencing batch reactor, Desalination and Water Treatment, 54, 11, pp. 3011-3019.
  • [7]. Rahaman, M.S., Mavinic, D.S., Meikleham, A. & Ellis, N. (2014). Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor, Water Research, 51, pp. 1-10.
  • [8]. Raj, S.E., Banu, J.R., Kaliappan, S., Yeom, I. & Kumar, S.A. (2013). Effects of side-stream, low temperature phosphorus recovery on the performance of anaerobic/anoxic/oxic systems integrated with sludge pretreatment, Bioresource Technology, 140, pp. 376-384.
  • [9]. Schütte, T., Niewersch, C., Wintgens, T. & Yüce, S. (2015). Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode, Journal of Membrane Science, 480, pp. 74-82.
  • [10]. Xu, H., He, P., Gu, W., Wang, G. & Shao, L. (2012). Recovery of phosphorus as struvite from sewage sludge ash, Journal of Environmental Sciences, 24, 8, pp. 1533-1538.
  • [11]. Yuan, Z., Pratt, S. & Batstone, D.J. (2012). Phosphorus recovery from wastewater through microbial processes, Current Opinion in Biotechnology, 23, 6, pp. 878-883.
  • [12]. Zafiriadis, I., Ntougias, S., Kapagiannidis, A.G. & Aivasidis, A. (2013). Metabolic behavior and enzymatic aspects of denitrifying EBPR sludge in a continuous-flow anaerobic-anoxic system, Applied Biochemistry and Biotechnology, 171, 4, pp. 939-953.
  • [13]. Zhang, H., Sheng, G., Fang, W., Wang, Y., Fang, C., Shao, L. & Yu, H.(2015). Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems, Water Research, 84, pp. 171-180.
  • [14]. Zou, H.M., Lu, X.W. & Li, T. (2014). Effect of side-stream phosphorus recovery on biological phosphorus removal performance investigated by chemical and microbial analyses in a novel BNR-IC process, Water Science & Technology, 70, 9, pp. 1441-1447.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa4c4bce-925c-432d-96cf-d79a5a124a79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.